
26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 1/19

Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is an HTTP-header based mechanism that allows a

server to indicate any origins (domain, scheme, or port) other than its own from which a

browser should permit loading resources. CORS also relies on a mechanism by which

browsers make a "preflight" request to the server hosting the cross-origin resource, in order to

check that the server will permit the actual request. In that preflight, the browser sends headers

that indicate the HTTP method and headers that will be used in the actual request.

An example of a cross-origin request: the front-end JavaScript code served from

https://domain-a.com uses XMLHttpRequest to make a request for

https://domain-b.com/data.json .

For security reasons, browsers restrict cross-origin HTTP requests initiated from scripts. For

example, XMLHttpRequest and the Fetch API follow the same-origin policy. This means that

a web application using those APIs can only request resources from the same origin the

application was loaded from unless the response from other origins includes the right CORS

headers.

https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/Origin
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 2/19

The CORS mechanism supports secure cross-origin requests and data transfers between

browsers and servers. Modern browsers use CORS in APIs such as XMLHttpRequest or

Fetch to mitigate the risks of cross-origin HTTP requests.

Who should read this article?

Everyone, really.

More specifically, this article is for web administrators, server developers and front-end

developers. Modern browsers handle the client side of cross-origin sharing, including headers

and policy enforcement. But the CORS standard means servers have to handle new request

and response headers.

What requests use CORS?

This cross-origin sharing standard can enable cross-site HTTP requests for:

Invocations of the XMLHttpRequest or Fetch APIs, as discussed above.

Web Fonts (for cross-domain font usage in @font-face within CSS),

so that servers can deploy TrueType fonts that can only be loaded cross-site and used by

web sites that are permitted to do so.

WebGL textures.

Images/video frames drawn to a canvas using drawImage() .

CSS Shapes from images.

This is a general article about Cross-Origin Resource Sharing and includes a discussion of the

necessary HTTP headers.

Functional overview

The Cross-Origin Resource Sharing standard works by adding new HTTP headers that let

servers describe which origins are permitted to read that information from a web browser.

Additionally, for HTTP request methods that can cause side-effects on server data (in particular,

HTTP methods other than GET , or POST with certain MIME types), the specification mandates

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://fetch.spec.whatwg.org/#http-cors-protocol
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.w3.org/TR/css-fonts-3/#font-fetching-requirements
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Using_textures_in_WebGL
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/drawImage
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Shapes/Shapes_From_Images
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 3/19

that browsers "preflight" the request, soliciting supported methods from the server with the

HTTP OPTIONS request method, and then, upon "approval" from the server, sending the

actual request. Servers can also inform clients whether "credentials" (such as Cookies and

HTTP Authentication) should be sent with requests.

CORS failures result in errors but for security reasons, specifics about the error are not

available to JavaScript. All the code knows is that an error occurred. The only way to determine

what specifically went wrong is to look at the browser's console for details.

Subsequent sections discuss scenarios, as well as provide a breakdown of the HTTP headers

used.

Examples of access control scenarios

We present three scenarios that demonstrate how Cross-Origin Resource Sharing works. All

these examples use XMLHttpRequest , which can make cross-site requests in any supporting

browser.

Simple requests

Some requests don't trigger a CORS preflight. Those are called simple requests, though the

Fetch spec (which defines CORS) doesn't use that term. A simple request is one that meets

all the following conditions:

One of the allowed methods:

GET

HEAD

POST

Apart from the headers automatically set by the user agent (for example, Connection ,

User-Agent , or

the other headers defined in the Fetch spec as a forbidden header name), the only

headers which are allowed to be manually set are

those which the Fetch spec defines as a CORS-safelisted request-header , which are:

Accept

Accept-Language

Content-Language

Content-Type (please note the additional requirements below)

The only allowed values for the Content-Type header are:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://fetch.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Connection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://fetch.spec.whatwg.org/#forbidden-header-name
https://fetch.spec.whatwg.org/#cors-safelisted-request-header
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Language
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 4/19

The only allowed values for the Content-Type header are:

application/x-www-form-urlencoded

multipart/form-data

text/plain

If the request is made using an XMLHttpRequest object, no event listeners are

registered on the object returned by the XMLHttpRequest.upload property used in

the request; that is, given an XMLHttpRequest instance xhr , no code has called

xhr.upload.addEventListener() to add an event listener to monitor the upload.

No ReadableStream object is used in the request.

Note: WebKit Nightly and Safari Technology Preview place additional restrictions on the

values allowed in the Accept , Accept-Language , and Content-Language headers.

If any of those headers have "nonstandard" values, WebKit/Safari does not consider the

request to be a "simple request". What values WebKit/Safari consider "nonstandard" is not

documented, except in the following WebKit bugs:

Require preflight for non-standard CORS-safelisted request headers Accept, Accept-

Language, and Content-Language

Allow commas in Accept, Accept-Language, and Content-Language request headers

for simple CORS

Switch to a blacklist model for restricted Accept headers in simple CORS requests

No other browsers implement these extra restrictions because they're not part of the spec.

For example, suppose web content at https://foo.example wishes to invoke content on

domain https://bar.other . Code of this sort might be used in JavaScript deployed on

foo.example :

This operation performs a simple exchange between the client and the server, using CORS

headers to handle the privileges:

const xhr = new XMLHttpRequest();
const url = 'https://bar.other/resources/public-data/';

xhr.open('GET', url);
xhr.onreadystatechange = someHandler;
xhr.send();

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/upload
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/ReadableStream
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Language
https://bugs.webkit.org/show_bug.cgi?id=165178
https://bugs.webkit.org/show_bug.cgi?id=165566
https://bugs.webkit.org/show_bug.cgi?id=166363

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 5/19

Let's look at what the browser will send to the server in this case, and let's see how the server

responds:

The request header of note is Origin , which shows that the invocation is coming from

https://foo.example .

HTTP/1.1 200 OK
Date: Mon, 01 Dec 2008 00:23:53 GMT
Server: Apache/2
Access-Control-Allow-Origin: *
Keep-Alive: timeout=2, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: application/xml

[…XML Data…]

GET /resources/public-data/ HTTP/1.1
Host: bar.other
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:71.0) Gec
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Connection: keep-alive
Origin: https://foo.example

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 6/19

In response, the server returns a Access-Control-Allow-Origin header with

Access-Control-Allow-Origin: * , which means that the resource can be accessed by

any origin.

Access-Control-Allow-Origin: *

This pattern of the Origin and Access-Control-Allow-Origin headers is the simplest

use of the access control protocol. If the resource owners at https://bar.other wished to

restrict access to the resource to requests only from https://foo.example , (i.e no domain

other than https://foo.example can access the resource in a cross-site manner) they

would send:

Access-Control-Allow-Origin: https://foo.example

Note: When responding to a credentialed requests request, the server must specify an

origin in the value of the Access-Control-Allow-Origin header, instead of

specifying the " * " wildcard.

Preflighted requests

Unlike simple requests, for "preflighted" requests the browser first sends an HTTP request

using the OPTIONS method to the resource on the other origin, in order to determine if the

actual request is safe to send. Such cross-site requests are preflighted since they may have

implications for user data.

The following is an example of a request that will be preflighted:

The example above creates an XML body to send with the POST request. Also, a non-standard

HTTP X-PINGOTHER request header is set. Such headers are not part of HTTP/1.1, but are

generally useful to web applications. Since the request uses a Content-Type of

application/xml , and since a custom header is set, this request is preflighted.

const xhr = new XMLHttpRequest();
xhr.open('POST', 'https://bar.other/resources/post-here/');
xhr.setRequestHeader('X-PINGOTHER', 'pingpong');
xhr.setRequestHeader('Content-Type', 'application/xml');
xhr.onreadystatechange = handler;
xhr.send('<person><name>Arun</name></person>');

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 7/19

Note: As described below, the actual POST request does not include the

Access-Control-Request-* headers; they are needed only for the OPTIONS

request.

Let's look at the full exchange between client and server. The first exchange is the preflight

request/response:

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 8/19

Lines 1 - 10 above represent the preflight request with the OPTIONS method. The browser

determines that it needs to send this based on the request parameters that the JavaScript code

snippet above was using, so that the server can respond whether it is acceptable to send the

request with the actual request parameters. OPTIONS is an HTTP/1.1 method that is used to

determine further information from servers, and is a safe method, meaning that it can't be used

to change the resource. Note that along with the OPTIONS request, two other request headers

are sent (lines 9 and 10 respectively):

Access-Control-Request-Method: POST
Access-Control-Request-Headers: X-PINGOTHER, Content-Type

The Access-Control-Request-Method header notifies the server as part of a preflight

request that when the actual request is sent, it will do so with a POST request method. The

Access-Control-Request-Headers header notifies the server that when the actual

request is sent, it will do so with X-PINGOTHER and Content-Type custom headers. Now

the server has an opportunity to determine whether it can accept a request under these

conditions.

Lines 13 - 22 above are the response that the server returns, which indicate that the request

method (POST) and request headers (X-PINGOTHER) are acceptable Let's have a closer look

OPTIONS /doc HTTP/1.1
Host: bar.other
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:71.0) Gec
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Connection: keep-alive
Origin: https://foo.example
Access-Control-Request-Method: POST
Access-Control-Request-Headers: X-PINGOTHER, Content-Type

HTTP/1.1 204 No Content
Date: Mon, 01 Dec 2008 01:15:39 GMT
Server: Apache/2
Access-Control-Allow-Origin: https://foo.example
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: X-PINGOTHER, Content-Type
Access-Control-Max-Age: 86400
Vary: Accept-Encoding, Origin
Keep-Alive: timeout=2, max=100
Connection: Keep-Alive

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/en-US/docs/Glossary/Safe/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Request-Method
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Request-Headers

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 9/19

method (POST) and request headers (X PINGOTHER) are acceptable. Let s have a closer look

at lines 16-19:

Access-Control-Allow-Origin: https://foo.example
Access-Control-Allow-Methods: POST, GET, OPTIONS

Access-Control-Allow-Headers: X-PINGOTHER, Content-Type
Access-Control-Max-Age: 86400

The server responds with Access-Control-Allow-Origin: https://foo.example ,

restricting access to the requesting origin domain only. It also responds with

Access-Control-Allow-Methods , which says that POST and GET are valid methods to

query the resource in question (this header is similar to the Allow response header, but used

strictly within the context of access control).

The server also sends Access-Control-Allow-Headers with a value of

" X-PINGOTHER, Content-Type ", confirming that these are permitted headers to be used

with the actual request. Like Access-Control-Allow-Methods ,

Access-Control-Allow-Headers is a comma-separated list of acceptable headers.

Finally, Access-Control-Max-Age gives the value in seconds for how long the response to

the preflight request can be cached without sending another preflight request. The default value

is 5 seconds. In the present case, the max age is 86400 seconds (= 24 hours). Note that each

browser has a maximum internal value that takes precedence when the

Access-Control-Max-Age exceeds it.

Once the preflight request is complete, the real request is sent:

POST /doc HTTP/1.1
Host: bar.other
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:71.0) Gec
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Connection: keep-alive
X-PINGOTHER: pingpong
Content-Type: text/xml; charset=UTF-8
Referer: https://foo.example/examples/preflightInvocation.html
Content-Length: 55
Origin: https://foo.example
Pragma: no-cache
Cache-Control: no-cache

<person><name>Arun</name></person>

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Allow
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 10/19

Preflighted requests and redirects
Not all browsers currently support following redirects after a preflighted request. If a redirect

occurs after such a request, some browsers currently will report an error message such as the

following:

The request was redirected to 'https://example.com/foo', which is disallowed for cross-

origin requests that require preflight. Request requires preflight, which is disallowed to

follow cross-origin redirects.

The CORS protocol originally required that behavior but

was subsequently changed to no longer require it . However, not all browsers have

implemented the change, and thus still exhibit the originally required behavior.

Until browsers catch up with the spec, you may be able to work around this limitation by doing

one or both of the following:

Change the server-side behavior to avoid the preflight and/or to avoid the redirect

Change the request such that it is a simple request that doesn’t cause a preflight

If that's not possible, then another way is to:

1. Make a simple request (using Response.url for the Fetch API, or

XMLHttpRequest.responseURL) to determine what URL the real preflighted request

would end up at.

2. Make another request (the real request) using the URL you obtained from

<person><name>Arun</name></person>

HTTP/1.1 200 OK
Date: Mon, 01 Dec 2008 01:15:40 GMT
Server: Apache/2

Access-Control-Allow-Origin: https://foo.example
Vary: Accept-Encoding, Origin
Content-Encoding: gzip
Content-Length: 235
Keep-Alive: timeout=2, max=99
Connection: Keep-Alive
Content-Type: text/plain

[Some XML payload]

https://github.com/whatwg/fetch/commit/0d9a4db8bc02251cc9e391543bb3c1322fb882f2
https://developer.mozilla.org/en-US/docs/Web/API/Response/url
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/responseURL

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 11/19

2. Make another request (the real request) using the URL you obtained from

Response.url or XMLHttpRequest.responseURL in the first step.

However, if the request is one that triggers a preflight due to the presence of the

Authorization header in the request, you won't be able to work around the limitation using

the steps above. And you won't be able to work around it at all unless you have control over the

server the request is being made to.

Requests with credentials

Note: When making credentialed requests to a different domain, third-party cookie policies

will still apply. The policy is always enforced regardless of any setup on the server and the

client as described in this chapter.

The most interesting capability exposed by both XMLHttpRequest or Fetch and CORS is the

ability to make "credentialed" requests that are aware of HTTP cookies and HTTP

Authentication information. By default, in cross-site XMLHttpRequest or Fetch invocations,

browsers will not send credentials. A specific flag has to be set on the XMLHttpRequest

object or the Request constructor when it is invoked.

In this example, content originally loaded from https://foo.example makes a simple GET

request to a resource on https://bar.other which sets Cookies. Content on foo.example

might contain JavaScript like this:

Line 7 shows the flag on XMLHttpRequest that has to be set in order to make the invocation

with Cookies, namely the withCredentials boolean value. By default, the invocation is

made without Cookies. Since this is a simple GET request, it is not preflighted but the browser

will reject any response that does not have the

Access-Control-Allow-Credentials : true header, and not make the response

const invocation = new XMLHttpRequest();
const url = 'https://bar.other/resources/credentialed-content/';

function callOtherDomain() {
 if (invocation) {
 invocation.open('GET', url, true);
 invocation.withCredentials = true;
 invocation.onreadystatechange = handler;
 invocation.send();
 }
}

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 12/19

, p

available to the invoking web content.

Here is a sample exchange between client and server:

GET /resources/credentialed-content/ HTTP/1.1
Host: bar.other
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:71.0) Gec
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Connection: keep-alive
Referer: https://foo.example/examples/credential.html
Origin: https://foo.example
Cookie: pageAccess=2

HTTP/1.1 200 OK
Date: Mon, 01 Dec 2008 01:34:52 GMT
Server: Apache/2
Access-Control-Allow-Origin: https://foo.example
Access-Control-Allow-Credentials: true
Cache-Control: no-cache
Pragma: no-cache
Set-Cookie: pageAccess=3; expires=Wed, 31-Dec-2008 01:34:53 GMT
Vary: Accept-Encoding, Origin
Content-Encoding: gzip
Content-Length: 106
Keep-Alive: timeout=2, max=100
Connection: Keep-Alive

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 13/19

Although line 10 contains the Cookie destined for the content on https://bar.other , if

bar.other did not respond with an Access-Control-Allow-Credentials : true (line

17), the response would be ignored and not made available to the web content.

Preflight requests and credentials
CORS-preflight requests must never include credentials. The response to a preflight request

must specify Access-Control-Allow-Credentials: true to indicate that the actual

request can be made with credentials.

Note: Some enterprise authentication services require that TLS client certificates be sent in

preflight requests, in contravention of the Fetch specification.

Firefox 87 allows this non-compliant behavior to be enabled by setting the preference:

network.cors_preflight.allow_client_cert to true (bug 1511151).

Chromium-based browsers currently always send TLS client certificates in CORS preflight

requests (Chrome bug 775438).

Credentialed requests and wildcards
When responding to a credentialed request:

The server must not specify the " * " wildcard for the

Access-Control-Allow-Origin response-header value, but must instead specify

an explicit origin; for example:

Access-Control-Allow-Origin: https://example.com

The server must not specify the " * " wildcard for the

Access-Control-Allow-Headers response-header value, but must instead specify

an explicit list of header names; for example,

Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

The server must not specify the " * " wildcard for the

Access-Control-Allow-Methods response-header value, but must instead specify

an explicit list of method names; for example,

Access-Control-Allow-Methods: POST, GET

If a request includes a credential (most commonly a Cookie header) and the response

Content-Type: text/plain

[text/plain payload]

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://fetch.spec.whatwg.org/#cors-protocol-and-credentials
https://bugzilla.mozilla.org/show_bug.cgi?id=1511151
https://bugs.chromium.org/p/chromium/issues/detail?id=775438

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 14/19

includes an Access-Control-Allow-Origin: * header (that is, with the wildcard), the

browser will block access to the response, and report a CORS error in the devtools console.

But if a request does include a credential (like the Cookie header) and the response includes

an actual origin rather than the wildcard (like, for example,

Access-Control-Allow-Origin: https://example.com), then the browser will allow

access to the response from the specified origin.

Also note that any Set-Cookie response header in a response would not set a cookie if the

Access-Control-Allow-Origin value in that response is the " * " wildcard rather an

actual origin.

Third-party cookies
Note that cookies set in CORS responses are subject to normal third-party cookie policies. In

the example above, the page is loaded from foo.example but the cookie on line 20 is sent

by bar.other , and would thus not be saved if the user's browser is configured to reject all

third-party cookies.

Cookie in the request (line 10) may also be suppressed in normal third-party cookie policies.

The enforced cookie policy may therefore nullify the capability described in this chapter,

effectively preventing you from making credentialed requests whatsoever.

Cookie policy around the SameSite attribute would apply.

The HTTP response headers

This section lists the HTTP response headers that servers return for access control requests as

defined by the Cross-Origin Resource Sharing specification. The previous section gives an

overview of these in action.

Access-Control-Allow-Origin

A returned resource may have one Access-Control-Allow-Origin header with the

following syntax:

Access-Control-Allow-Origin: <origin> | *

Access-Control-Allow-Origin specifies either a single origin which tells browsers to

ll th t i i t th l f t ith t d ti l th " * "

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 15/19

allow that origin to access the resource; or else — for requests without credentials — the " * "

wildcard tells browsers to allow any origin to access the resource.

For example, to allow code from the origin https://mozilla.org to access the resource,

you can specify:

Access-Control-Allow-Origin: https://mozilla.org
Vary: Origin

If the server specifies a single origin (that may dynamically change based on the requesting

origin as part of an allowlist) rather than the " * " wildcard, then the server should also include

Origin in the Vary response header to indicate to clients that server responses will differ

based on the value of the Origin request header.

Access-Control-Expose-Headers

The Access-Control-Expose-Headers header adds the specified headers to the allowlist

that JavaScript (such as getResponseHeader()) in browsers is allowed to access.

Access-Control-Expose-Headers: <header-name>[, <header-name>]*

For example, the following:

…would allow the X-My-Custom-Header and X-Another-Custom-Header headers to be

exposed to the browser.

Access-Control-Max-Age

The Access-Control-Max-Age header indicates how long the results of a preflight request

can be cached. For an example of a preflight request, see the above examples.

Access-Control-Max-Age: <delta-seconds>

The delta-seconds parameter indicates the number of seconds the results can be cached.

Access-Control-Allow-Credentials

The Access-Control-Allow-Credentials header indicates whether or not the response

Access-Control-Expose-Headers: X-My-Custom-Header, X-Another-Custom-He

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/getResponseHeader
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 16/19

The Access Control Allow Credentials header indicates whether or not the response

to the request can be exposed when the credentials flag is true. When used as part of a

response to a preflight request, this indicates whether or not the actual request can be made

using credentials. Note that simple GET requests are not preflighted, and so if a request is

made for a resource with credentials, if this header is not returned with the resource, the

response is ignored by the browser and not returned to web content.

Access-Control-Allow-Credentials: true

Credentialed requests are discussed above.

Access-Control-Allow-Methods

The Access-Control-Allow-Methods header specifies the method or methods allowed

when accessing the resource. This is used in response to a preflight request. The conditions

under which a request is preflighted are discussed above.

Access-Control-Allow-Methods: <method>[, <method>]*

An example of a preflight request is given above, including an example which sends this

header to the browser.

Access-Control-Allow-Headers

The Access-Control-Allow-Headers header is used in response to a preflight request to

indicate which HTTP headers can be used when making the actual request. This header is the

server side response to the browser's Access-Control-Request-Headers header.

Access-Control-Allow-Headers: <header-name>[, <header-name>]*

The HTTP request headers

This section lists headers that clients may use when issuing HTTP requests in order to make

use of the cross-origin sharing feature. Note that these headers are set for you when making

invocations to servers. Developers using cross-site XMLHttpRequest capability do not have

to set any cross-origin sharing request headers programmatically.

Origin

The Origin header indicates the origin of the cross-site access request or preflight request.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Request-Headers
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 17/19

Origin: <origin>

The origin is a URL indicating the server from which the request is initiated. It does not include

any path information, only the server name.

Note: The origin value can be null .

Note that in any access control request, the Origin header is always sent.

Access-Control-Request-Method

The Access-Control-Request-Method is used when issuing a preflight request to let the

server know what HTTP method will be used when the actual request is made.

Access-Control-Request-Method: <method>

Examples of this usage can be found above.

Access-Control-Request-Headers

The Access-Control-Request-Headers header is used when issuing a preflight request

to let the server know what HTTP headers will be used when the actual request is made (such

as with setRequestHeader()). This browser-side header will be answered by the

complementary server-side header of Access-Control-Allow-Headers .

Access-Control-Request-Headers: <field-name>[, <field-name>]*

Examples of this usage can be found above.

Specifications

Specification Status Comment

Fetch

The definition of 'CORS' in that

specification.

Living

Standard

New definition; supplants W3C CORS

specification.

Browser compatibility

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Request-Method
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Request-Headers
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/setRequestHeader
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://fetch.spec.whatwg.org/#cors-protocol
https://www.w3.org/TR/cors/
https://github.com/mdn/browser-compat-data/issues/new?body=%3C%21--+Tips%3A+where+applicable%2C+specify+browser+name%2C+browser+version%2C+and+mobile+operating+system+version+--%3E%0A%0A%23%23%23%23+What+information+was+incorrect%2C+unhelpful%2C+or+incomplete%3F%0A%0A%23%23%23%23+What+did+you+expect+to+see%3F%0A%0A%23%23%23%23+Did+you+test+this%3F+If+so%2C+how%3F%0A%0A%0A%3C%21--+Do+not+make+changes+below+this+line+--%3E%0A%3Cdetails%3E%0A%3Csummary%3EMDN+page+report+details%3C%2Fsummary%3E%0A%0A*+Query%3A+%60http.headers.Access-Control-Allow-Origin%60%0A*+MDN+URL%3A+https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FHTTP%2FCORS%0A*+Report+started%3A+2021-10-26T09%3A31%3A52.367Z%0A%0A%3C%2Fdetails%3E&title=http.headers.Access-Control-Allow-Origin+-+%3CPUT+TITLE+HERE%3E

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 18/19

Report problems with this compatibility data on GitHub

Full support

See also

CORS errors

Enable CORS: I want to add CORS support to my server

XMLHttpRequest

Fetch API

Will it CORS? - an interactive CORS explainer & generator

How to run Chrome browser without CORS

Using CORS with All (Modern) Browsers

Stack Overflow answer with “how to” info for dealing with common problems :

How to avoid the CORS preflight

Access-Control-Allow-Origin

Chrome 4

Edge 12

Firefox 3.5

Internet Explorer 10

Opera 12

Safari 4

WebView Android 2

Chrome Android Yes

Firefox for Android 4

Opera Android 12

Safari on iOS 3.2

Samsung Internet Yes

https://github.com/mdn/browser-compat-data/issues/new?body=%3C%21--+Tips%3A+where+applicable%2C+specify+browser+name%2C+browser+version%2C+and+mobile+operating+system+version+--%3E%0A%0A%23%23%23%23+What+information+was+incorrect%2C+unhelpful%2C+or+incomplete%3F%0A%0A%23%23%23%23+What+did+you+expect+to+see%3F%0A%0A%23%23%23%23+Did+you+test+this%3F+If+so%2C+how%3F%0A%0A%0A%3C%21--+Do+not+make+changes+below+this+line+--%3E%0A%3Cdetails%3E%0A%3Csummary%3EMDN+page+report+details%3C%2Fsummary%3E%0A%0A*+Query%3A+%60http.headers.Access-Control-Allow-Origin%60%0A*+MDN+URL%3A+https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FHTTP%2FCORS%0A*+Report+started%3A+2021-10-26T09%3A31%3A52.367Z%0A%0A%3C%2Fdetails%3E&title=http.headers.Access-Control-Allow-Origin+-+%3CPUT+TITLE+HERE%3E
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors
https://enable-cors.org/server.html
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://httptoolkit.tech/will-it-cors
https://alfilatov.com/posts/run-chrome-without-cors/
https://www.telerik.com/blogs/using-cors-with-all-modern-browsers
https://stackoverflow.com/questions/43871637/no-access-control-allow-origin-header-is-present-on-the-requested-resource-whe/43881141#43881141

26.10.2021, 11:45 Cross-Origin Resource Sharing (CORS) - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS 19/19

How to avoid the CORS preflight

How to use a CORS proxy to get around “No Access-Control-Allow-Origin header”

How to fix “Access-Control-Allow-Origin header must not be the wildcard”

Last modified: Oct 7, 2021, by MDN contributors

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/contributors.txt

