tutorialspoint

S I MPLY EASY LEARNMNINIG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

Java

About the Tutorial

Java is a high-level programming language originally developed by Sun Microsystems and
released in 1995. Java runs on a variety of platforms, such as Windows, Mac 0OS, and the
various versions of UNIX. This tutorial gives a complete understanding of Java.

This reference will take you through simple and practical approaches while learning Java
Programming language.

Audience

This tutorial has been prepared for the beginners to help them understand the basic to
advanced concepts related to Java Programming language.

Prerequisites

Before you start practicing various types of examples given in this reference, we assume
that you are already aware about computer programs and computer programming
languages.

Execute Java Online

For most of the examples given in this tutorial, you will find a ‘Try it’ option, which you
can use to execute your Java programs at the spot and enjoy your learning.

Try following the example using the ‘Try it’ option available at the top right corner of the
following sample code box —

public class MyFirstJavaProgram {

public static void main(String []args) {
System.out.println("Hello World");

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Table of Contents

F i oTo YU VI UL T SRS i

Y Lo 1= o ol SRR i
=T =To LT =L P PP PPPPPPPPPPPRPPPPRE i
EXECULE JAVA ONIINE .ttt ettt et rt e e ettt e sttt e e e sbte e e s s be e e snasaeessabbeeeesbaeesnasaeeesaseaeesnnsaeesnnns i
I o] [l o) N Oe] o1 =T o | £ URUPS i
N Y] [1
L. JAVA = OVEIVIEW ..uiieeiiiiieniiiiieeiiiiinniiiensietiensiesisnssestsnssestsnssessensssstsnssssssnssssssnssssssnssssssnsssssansssssanssssssnsssssannnns 2
[1 0o VAo B -V SN 3

B e Tod I 2o T AoV AT | I ==Y o U URUN 3

LIV L9 O '« 1 o) o OSSO PON 4
WAt S NEXL? ...eiiiiiiiie e ciee ettt e sttt e e ettt e e e etaeeesbbee e et teeeeaasaeeesassaee e staeeeasssasesassaaeastaeesanstaeesssasasanssesenses 4

2. Java - ENVIroNMENT SETUP ..ccoviiiiiiiiiiiiiiiiiiiiiiiiniiiiniissiissssiissssssssssssinnss 5
TrY it OPLION ONIINE .ttt sttt e st e et e st e s bt e sabeesabeesabeeeabeesabeesaneesabeesaneesn 5
LOCAl ENVIFONMENT SETUDeiiiitiieiee ittt sttt sttt et e ettt e st e st e s bt e sabeesaseesabeesuseesabeesaneesabeennneess 5
POPUIAN JAVA EAITOTS ettt st ettt st st e st e s bt e sab e e sabeesaseesabeesaneesabeeenseesn 6
WA IS INEXE? .ereieieiiieiiiiie e e e ee ettt e e e eerere e e e e e e sesareeeeeeeeesasbaaeeeeeeeaasstasaaaeeeesaasbssaaaseeesansssaeseaeesesanssraneeeesanns 6

I - 1V Tl = 1= L 1oy V] - O TSP RTPON 7
IS M NV T o o =1 - o o EO OO PPON 7

L T LoV gL -) SO ON 8
BN T Lo LT 0 41 £ =T SRRSO 9
N = 1 o Yo 13 =T oSSR 9
N Y L= o 1= SRS 9
JAV@ AT @Y S ettt 5885588ttt s e e e sttt nnnnnnbnnnnnnnen 9
JAV@ ENUIMIS ettt sttt s s st s s s n st nnnbnnnnn 10
BN T YA) o £ PSR 10
COMMEBNTS IN JAVA .ttt eeeeees 11
USING BIANK LINES ...vviieeieieciiiiteee ettt ettt e e e e e sttt e e e e e e s ettt b e e e e e e sesaastaaaeeaesesnsbaaaeeeesesanssaanneeesesanssnsees 12

Ta] g Y= o T g ol TS SPU 12

T A=Y o =Tl TSRS 12
RV = o N = o PSSR 12

4. Java — ODBJEcts & Classes......cciiiiirrereriiiiiissssnneeiiniiississsseniiiisissssssessssissssssssseessssssssssssessssssssssssssssssssssssssns 13
(0] oJ[=Tot €3 T T -1 SRS 13
(01T T s T 17 1SRRI 14

(00 1 1 U Lot {0 S P P P P PP PP PP PPPPPPPPPPPPPPPNY 14
HOW t0 USE SINGIELON ClIaSS? ...ttt ettt e e ettt e e e e e e s et r e e e e e e s e bbb e e s eaeesesantaaseeaeeeennnssaneaaans 15
(O1gF Ta] =T A O] o} [=Tot P PURPNS 17
Accessing Instance Variables and Methods...........uuuiiiiiiioccciiee et e e e e e 18
SoUrce File DeClaration RUIESceiii oottt ettt e e ettt e e e e e s et e e e e e e sesaabtaeseeeeeeeastbaseaaeeennns 20
BN 2= ol & =P RR 20
IMPOIT STATEMIENTS oeeieiiieiiiiiiiitite ittt r e e b e e tetebebsbsbatsssbssetsssbsssbsbasssssssssssssssssssssesssssnsnsnsnsnsnnnnn 21

A SIMPIE CASE STUAY .eeiiiiiiiee ettt et e e et e e e st e e e e te e e s nseee e s taeeeasseeesanseeeesnsaeeeasseeesansneesssseeennn 21
RV F= o N = g o S 23

1]

[

' tutorialspoint

SIMPLYEASYLEARNINE

10.

Java

JaVa — BaSiC DAtatyPes ..cccceeeeiiiiiiiiiinnniiiiniiienmssiiiiiiimesssssisisiimssssssssssiisssssssssssssssssssssssssssssssnsssssssssssssnnnns 24
PrIMITIVE DATAtyYPOS cuvteieieieieieietereieteteteterererer eyt et et e—e—etebaseteseaesesetetetesesesssesesssasssesesasessssbesesesesssnnnsn 24
RO L g T ol DT =YY/ o 1< S 26
NV WL =T =] PR 26
VY o L I A= G 4SSN 28
JaVA = Variable TYPES c.cccuveeeeeeeeemeeeeeeeeeeemeeeemmeeemmmmessess 29
(oo IV £ Ta =] o] [T UPRRR 29
T T =Y ol =T =1 o] 1S 31
ClaSS/STAtIC VaATTADIES ..cevvieiieeeeeeeeeee ettt ettt et e e ettt e e s e s e e aa et eeesesasbasaeeeesssasbasaeeeesssasssssaeeeesssansrnnees 33
RV B o N = g o RS 34
JaVa — MOIfi@r TYPES ..ceeeeeeeieeeiieeeieeeeeeeeeeeeeeeeeeeeeseesesssssesssnssnssnsnnsnnnnnnnns 35
N ool Y 1V oo [T PSPPSR 35
JaVa NON-ACCESS MOIFIEIS ..veieiiieiieieiee ettt et e e e e e e et e e e e e e eessaabaaeeeeeeesnntarseaeeeesnnnrsaaeeeens 38
RN [eIN F= L Lol Y [Yo L1 =T oSSR URR P 38
THE FINAI IMIOIFIEE ettt e e e e e e e e e e e ata e e e e e e sesaaraaaeaeeeesanbareeaeeeesannsrnaeeeens 39
RNl oI AT 1Y Lo 1 1=y O UPURRSR 41
Y Yolol T @Y g Y o I\ Fo e [=T SRS PUSN 43
[N oY g B A Velol TN Y, Fo Yo [=T RS 44
AV Pl = G o SRS 44
JAVa — BaSIiC OPEIatorsccceeuuiiiiiiiiineniiiiiiiiennnesiisesitsesnnssssssssssesnnssssssssssesnnssssssssssssnnssssssssssssnnsssssssssssannnns 45
The ArTNMETIC OPEIAtOrS. . uiiiiiiiieeeiiee ettt e ctee e et e e et e e e e ta e e e e stbeeeeeaaeeesbbaaeaastseeeasssaeesasssaeeastseeeanssaeesssenns 45
The RelatioNal OP@rators......cocui ettt ettt e st e st e e st e s be e sbeesabeeebeesabeesneenane 47
ThE BitWiSE OPEIAtOrsSeiiiiiiiiieitieeite ettt rite e et sab e et e e st e e st e e st e e eabeesabeesabeesabeeeaseesabeesabeesabeesaseesabeesneesane 49
B T Mo =4 ot I @ o 1=T =1 o] PSR 52
The ASSIZNMENT OPEIAtOIS ..eiiiiiiieieiiiteectteeertee e et e e eette e e st aeeeastteeessateeesasseeeessteeeeansseeesasseesessseeesassseeessnsees 53
[V ol 1T [=Te TN I O e J=T =1 o] <SRRI 57
Precedence Of JAVA OPEIATONS.cciciiiececiee ettt e e ettt e eectte e e eette e e e st e e e eetaeeeeatbeeeesstaeeeessaeessseaeaansaseeassseesasreeaans 59
ATV o L A= PSPPSR 59
V2 Tl o Yo T e J 0o T 1 1 o 1 RSP UTUS 60
Wil LOOP IN JAVA . ittt e e e c et e e e e e e st r e e e e e e se bbb aeeeeaeseasataaeeaessesasstaeseeessansnstaneeaessanns 61
(o] g oToT o T o T -1 [PPSR 62
(D To N Y11 WoToT o I T o I - V7 ISP 65
[WoToT o M 0o Yo N o] I &= 1 =] 41T o) PN 67
Break State@mMENT iN JAVAoii ettt e et e st e e et e e e st e e e s ate e e s aae e e e nreeeeenaeeeeraeeeens 67
Continue StatemMENT iN JAVA ... 69
[o oY Yol=To I fo gl [oTeY o T I F- 1V F SRR 70
ATV o L I A= 4SS 71
Java — DeCiSiON IMaKING ...cceeenneiiiiiieiiiicciieiieiiensceseeererenssseessesesnnssssssssesennnssssssssssesnanssssssssesennnnssssnsnesennnns 72
L = 1 =T 01T O A o T - 1V TP PSRRI 73
Y Y] = =T o 1= ol Lo T - 1V TS 74
The if...else if... IS8 STAtEMENTcii it e e et e e e e rae e e srae e e e s treeeeneeeeennneas 76
N I e I Y o= =T 0 o 1T 0 AT YO 1V S 77
SWItCH StAtEMENT IN JAVA..ciiiiiii it e e s e e e s e e e e ete e e s aaeeeessteeesanseeeesnaeeeesnsaeenannes 78
L (oI] e 1=1 £ 1 (o] S UPUR 80
ATV o L I A= 4SSN 81

iii
[

' tutorialspoint

SIMPLYEASYLEARNINE

11.

12,

13.

Java

JAVa = NUMDBEIS Class c...uuuuuereiiiiiiiiiinneeeiiiiiiisinsneiisissssssssssesisissssssssssessssssssssssssssssssssssssassssssssssssssssssssssssss 82
NUMDBEE IMEBEROAS ..ttt ettt st e s a b e e s bt e e sabeesate e sabeesbteessbeesbaeesateebeeesaseenaes 83
JaVa XXXVAIUE METNOMcoiiiiiii ittt ettt e s be e st e st esa b e e sabeesabeesabeesabaesnbeesabaesnseenane 86
Java — cOMPAreTO() METNOM......ii ittt e et e e s te e st e e st e e s beesateeanbeeebaeeseeeseeensneanes 87
Java — €QUAIS() IMETNOM ..ottt e et e et e e st e e be e s be e e aeesbeeebeeebeeeaeeante 88
Java — ValUBOT() IMETNOMoeeeiiiieieee ettt e et e st e e st e e st e e ebeesateesaseesataesbeesnteeeseennte 89
Y el o R (g Ta Y= § Y/ =1 d Vo Yo PRSPt 91
Java — PArselnt() MELNOG.cc..uiiieee e e e e et e e et e e e e ete e e s tba e e e s ateeeeeanreeeenreeas 92
N - 1o 1Y I/ =3 1 T Yo SRS 93
NN T ot 1 I8\ =1 4 o o o PR 94
N T Fo o T TN AV, =3 o oV Yo IS 95
NN T T Y 1= 2 Vo Yo PR 96
Y el CeT0 LYo [LY =31 oo o USSPt 97
NN el o 1L LY =31 o o USSPt 98
Y el 0 T 1Y/ =1 o Yoo USSPt 99
Y Rl (o T 1Y (=1 Lo o USRS 100
N Rl [T=d Y/ = 1 o T Yo IR RSP 101
JAVa = POW() MELROMA ... i e e e et e e e et a e e s bt e e e s atae e seasaaeesabaeeeesraeesnseeas 102
N e [§ 1Y 1= 4 o Yo O USSP 103
N T Y =3 1 Ve Yo I USSP 104
N e oo 1§ LY/ 1= 1 5 o Yo FO USRS 105
Y el o 1A= Ve Yo USSR 106
Y s Y [T A=Y d o o T USSR 107
Y i Tl 1§ LY (= o Lo o SR 108
Y 1 =10 1§ LY = oo o SRS 109
JaVa — AtaN2() MELNOM.......ooiieeiei e et e e e e et e e e ettt e e e e bbe e e e sataeeeeabaaeeebaeeeennraeeenraeas 110
Java — tODEErees() MELNOMoooiiiieeecee et e et e e e et e e e e bt e e e e sate e e eeabaaeeeabbeeeensteeeenneeas 111
Java — tORAMIANS() IMETNOMU ... et e et e e et e e e e bbe e e esabaeeeeasaaeesabaeeeensraeesnseeas 112
Java — random() MELNOMc..eiiieee e e et e e e et e e e e bt e e e e at e e e eeabaeeeebaeeeearaeeenreeas 113
WAt IS NBXE? ...ttt e e ettt e st e e e s bt e e e e abe e e seabb e e s sabbeae e s beeeseasbeeesanbeaesanbeeesansaeesanseeas 114
JAVa — Character Classccceeeiiiiiiiiiiueeeiiiiiiiiiiinneeeiiisssssssssessiisssssssssesssssssssssssessssssssssssnssesssssssssnnssssssssas 115
B S CaE SEOUENCES. ..eveieteieieieitttietetttetetetaresebatasabebaeeb et et e tetebee s babs st s b st st ss st st s st 545t s st st s s s s st ss s s ss s s nbnb s b nbnnnnnnnnn 115
CharaCter METNOMS.eiuiiiiieeee ettt sttt e s e sbt e s ab e bt e e s bt e e bt e e sate e bt e e sabeesbeeenneeennnes 117
N Rl I W= =T g Y= 4 o Lo e TR 117
Java — iSDIGIL() MELNOMoeeeeeiiee et e e e et e e e et e e e e bbe e e esataeeeeasaaeeeabaeeeensteeesnseeas 118
Java — iISWhitespace() MELNOMeiiiiiiie e ettt e e et e e e et e e e e eara e e e e abeeeenntaeeeeasenas 119
Java — iSUPPErCase() MELNOMc.uiii ettt e et e e et te e e e st e e e eeabaae e sabeeeennsaeeeensenas 120
Java — iISLOWEICASE() MELNOMueiiiiee e ettt e e et e e e eara e e e e eab e e e eeataeeeeanaeas 121
Java — toUpPPerCase() MELNOMooi ittt e e e e e et e e et e e e e tb e e e eearaeeeeanaeas 122
Java — tOLOWEICASE() METNOUuviiiieiei ettt e e e e e e e e e e e e s sabaareeeeeesnanbsraeeeeessensnrees 123
N T (o R T Y= I8/ =1 o Vo o RS 124
WWNAE S NEXE? Lottt ettt e st e st e st e e sabeesabeesa b e e sabeesabeessseesabeesabeesabeesnseesbaesnaesase 125
JAVA = SEINGS ClasS...ceeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeesssnssnnnns 126
CrEAtiNG StIINES oo 126
Java — String Buffer & String BUIlAer ClasSesuuuiii ittt e e e e e e s barr e e e e e e seannnees 126
R gl T=4 =0T AT 1Y/ [=1 d o T o PR 127
Java — String Buffer append() METNOMcceuiiiiiieeecee ettt ettt et e e et e e e et e e e aneeas 128
Java — String Buffer reverse() Method..............oi ittt et e et e e 129

iv
[

' tutorialspoint

SIMPLYEASYLEARNINE

Java

Java — String Buffer delete() Methodoooeiiiiceeecee et e e st e e e e e e enneeas 130
Java — String Buffer insert() Methodoouiiiiiiee e e re e e 131
Java — String Buffer replace() METNOoouiii ettt eeer e e st e e e e e e e eaneeas 132
SN LENGEN. .ttt et b e e s b e e bt e bb e e bt e e sbb e e be e e s ab e e bt e e e abe e nne e e sareenes 135
CONCAtENALING STIINES .. .eeiiiiiiiii it s e s s ab e e s e e e s s e e e s e bt e e senbaee s saraeeseas 136
Creating FOIM@t STIINES ...coiiiiiiiiiiii e st a e e s e e e s e b e e e s esrae e s sraeeeeas 136
SEFNG METNOUS ...ttt ettt bb e e bt e s bt e s be e e sabe e bt e e ssbesneeesaneenees 137
Java — String ChartAt() IMETNOU.c.eeiee et e e s re e e e rate e e s eaea e e e satbeeeenneaeeennneeas 142
Java — String compareTo(Object 0) METhOM.........c.uiii e e sareeas 143
Java — String compareTo(String anotherString) Method..........oocuveeeiiiii i 144
Java — String compareTolgnoreCase() Methodccuii i 145
Java — String conCat() MELNOGuiiiiiee et e e st e e e rate e e et e e e s tb e e e enaeaeeeennneas 146
Java — String contentEqQUAlS() METRO......couiiiieci et s st sa e e s reesaree s 147
Java — String copyValueOf(char[] data) Methodccccuiiiiieciiie it 148
Java — String copyValueOf(char[] data, int offset, int count) Method.........c.ccceccveeeiiiiiieeiee e 149
Java — String endsSWIth() MEthodoo i st e et e e s te e e te e s reesaree s 150
Java — String @qUAIS() IMEENOMccceeiiee et et e et e e e st e e e et e e e e arae e e e tbe e e e ntaeeeearaeas 151
Java — String equalsignoreCase() MEthOdcoiiii e et e e e s tre e e et e e e snnaeas 152
Java — String getBytes(String charsetName) Method.........cceiiuiiiecciiie e 154
Java — String getBYLES() MELNOM........ooi i et e e st e e et e e e e bt e e e s treeeenataeeeeanaeas 155
Java — String getChars() MEthOdoouiiiiie ettt e e et e e ettt e e s br e e e e sataeeeeanaeas 156
Java — String hashCode() METNOM........cocuiieiicece et e e s te e e abe e sraeearee s 157
Java — String indeXOf(int Ch) MEthOdcouiiiiece e st e e s reesaree s 158
Java — String indexOf(int ch, int fromIndex) Methodccceeviiiiiiecii e 159
Java — String indexOf(String Str) MEthodooiiiiiie et 160
Java — String indexOf(String str, int fromIndex) Method............cceeeeiiiiiiciiii e 161
Java — Sring INTErN() IMETNOMocoeiiee ettt e et e e e et e e e e sabe e e eeabaee e eabeeeesntaeeeeasanas 162
Java — String lastindexOf(int ch) METROdoiiiiieeeee e et e e e eaneeas 163
Java — String lastindexOf(int ch, int fromIndex) Methodccceeiiiiiiiiciiee e 164
Java — String lastindexOf(String Str) METNOd.ccuviii e e e e e et e e areeas 165
Java — String lastindexOf(String str, int fromIndex) Method..........c.cecceeiiieeiii e 166
Java — STring 1@NGEN() MELNOMc.eeeeeei et e re e e e s te e e b e e s teeenbeesraesaree s 167
Java — String MatChes() METNOMcuii ittt e s b e e s te e e e e sateeeabeesaraesnreean 168
Java — String regionMatches() MEtNOMooiiiicieeceece et sre e saae e s e e earee s 169
Java — String regionMatches() METNOMcccuiiii et et e e et e e e e sate e e e eanaeas 171
Java — String replace() METNOMuii it et e e et e e et e e e e eata e e e e tbeeeesabaeeeennaeas 173
Java — String replac@All() MELNOM.ccc.uiiiiei e et e e et e e et e e et e e e e bb e e e esntaeeeeanaeas 174
Java — String replaceFirst() METNOU.c.uiii ettt e e et e e e abb e e e s br e e e e natreeeeaneeas 175
Java — Sring SPlIt() METNOUeiieeeee e e et e et e e e e tbe e e e st e e e eeataeeesbbeeeeaaraeeenneeas 176
N e A [o [(I Y/ =1 d T Yo RS 178
Java — String startSWith() METRO......ccoeiiiieee e e e e e e e e s re e e e snee e e e eaneeas 180
Java — String startSWith() METRO.......ooeeiiire e e e e st re e e et e e e enneeas 181
Java — String subsequeNCe() METhOMooiciiiii et e e e e s rre e e e sneeeeeenneeas 182
Java — String subSriNG() METNOA........oooeiiiieee et et e e e et e e e e tb e e e e e ataeeeeanaeas 183
Java — String sUbSErNG() METNOAoooeiiieeee e ettt e et e e e eaaa e e e e tr e e e eeataeeeeanaeas 184
Java — String toCharArray() METNOGuii ettt et e et e e eab e e e e bb e e e esataeeeeaneeas 186
Java — String toLowerCase() MEthOd..........cocuiii ittt et e e et et e e e tb e e e esarae e eeaneeas 187
Java — String toLowerCase() MEthOd..........oocuiiiiiiiiee ettt e e et e ta e e e e tr e e e e earee e eeaneeas 188
Java — String tOSTriNG() MEtNOd.........oeiiee e e e st re e e e sneee e e eaneeas 189
Java — String toUpperCase() METNO.oi it e e e e e e e e s tre e e e rneaeeeenneeas 189

\%)

[

' tutorialspoint

SIMPLYEASYLEARNINE

14.

15.

16.

17.

18.

Java

Java — String toUpPerCase() METNOU.uvi et e et e e e e e e eaea e e e st e e e eneaeeeenneeas 190
N e A a8 4 g T Y I AV =1 o oo Yo RS 191
Java — String valuEOF() MELNOMeeieiieee et e e st e e e rate e e e eata e e e st e e e enneaeeeeaneeas 192
B L TRl Y 4 - 1S 196
Declaring Array Variablesoo oot st e e 196
CrEATING ATTAYS oottt ettt b e e e s bbbt e s ettt e s e e e e s e b e e e s e ba e e et b b e e e s b et e s e nr e e e s b ae e e s raeeeeas 196
PrOCESSING AITQYS ieiiiiiiiiie ettt sttt sttt e bttt s e e e s e e e s e sb e s e s sba e e s s aba e e s e sbe e e ssbae e s aareeesenneeesannneas 198
I (o] =T ol a T e Yo o L3RS 199
Passing Arrays t0 METNOASueiiiiiieece e e e e e e e st e e e e te e e e araeeesnsreeeesteeesnnaeas 199
Returning an Array from @ IMETNOAuiii e e et e et e e e aeae e e s atb e e e enteeeennnneas 200
LAY = VA 1 - 1R 200
JaVa — Date & TIME ..ceeeeeiiiiiiiiiiiiiiieiieiietieieeeeeeeeeeeeeeseseessesesessessnss 202
Getting CUrrent DAate & TiMe. . oi ittt st e s e e s e sr e e e s ennee e snaeeeeas 203
(DN OoTaqT o T [o] o PSSP P PO PPPRRTP 204
Simple DateFormat FOrmMat COUESc.uiiiiiiiiiiiieit ettt ettt st sbe e s aneesnt e e saneenaees 205
Date and Time CoNVErsioN ChAraCersciccueriiiieeeeiiieeeeiiee e stee e ettt e ssteee s sbeeeesssteeessaraeeesnbeeesesseeesnnsneas 208
Parsing STriNES INTO Dat@S . .uuuuuuiuiuiiiuiiiutuierereierererererererer e ————————————————e—————e—e—e—e—e—atetetatetareteterarerarererarene 209
SIEEPING FOr @ WIIE .ot e e et e e e et e e e st e e e e s tb e e e eeatbaeesstaaeeastaeesenseaeesnseeas 210
[V T VLT Y= o =T o Y=Y I T o TSRS USSR 211
GregorianNCalendar Classueiicciieeeiiee ettt et e e eetee e e st e e e e tte e e s e aaee e s baeeeeatseesaabaaeeaabaeeeastasesansaaeessanaaans 212
Java — RegUIAr EXPIeSSIONS......ceeseeseeessessessssssssssssssssssssssssssssssssssssnnssnsnnnnnnnnnnnnnn 218
(O o108 a1 aT= A CT Y oTU] o LT PT P UPPRR PRI 218
REGUIAI EXPIreSSION SYNTAX ...eiiitiiiiiieritiiiitieeiet et ettt ettt ettt et e et s it e e bt e e sab e e saeeesabeesaeeesabeesneeesabeesnseesateennneens 220
Methods Of the MatCher CIasseuuiiiiieiiiieieeee ettt ettt e s e sareesabeesanee s 223
1Y T 1V =T o o £ 230
(O1g=F Ta T o7 = 38 1Y/ 1= Vo o [PPSR 230
V{134 o Yo Te @r=1 | 11 -SSP 231
THE VOIT KBYWOIT ..ceiiiiiiiieeee ettt e e e e st e e e e e st a e e e e e e seanetaeeeaaesesnstaaeeeassesannsesneaaeeesanssnrees 232
Passing Parameters DY ValUe..........uuiieiiiiiiec ettt e e e et e e e e e s et aar e e e s e e snanbraneaeeas 233
V{134 aYoTe @AV 4 T Y- Yo 1o -SSP 235
USiNg ComMMANd-LINE ArBUMEBNTS ...cviiiieieiiieeeireeesetteeeesieeeeeteeeesstaeeeessteeeesaeeeesssseesessseeesaseeessasseeessnsseesnnnes 236
THE CONSTIUCLONS ..eiitieiiiiietteetee ettt ettt ettt ettt e ste ettt e s h et e sae e e sab e e s bt e e sabeesaeeesabeesaeeesabeesaseesabeesaseesabeesnseesabaenaseesn 237
Parameterized CONSTIUCTON ..co.vei ittt ettt ettt ettt et sat e st esbt e e s abeesae e e sabeesaeeesabeesaseesabeenaneess 238
LTS A AT G A e L PP 239
Variable ArgUMENTS(VAI-arES) ...cecccuiiieiiieeeiiieeee ettt e eette e e ectteeeeebeeeeetbeeesatseeaeasbaeeeesseeesassaaasansreseanssaeeeansenas 242
The fINAlIZE() IMETNOM ... et et e e e ettt e e e ettt e e e e bt eeeesabeeeeeasaaaeeatbeeeennteeeeanseeas 243
JAVA — FIleS @NG0 1/ O ...eeeeeeeeeeeeieeeeeeeeeeeeeeeeseesessessnnnns 244
(<=1 0 o [P PP P PP UPPP PP 244
STANAANT SErEAMS ...ttt sttt et e e st e e e e sa bt e e s eabbe e e sabate e s s bteessasbeeesabbaeesaabbeesenbeeesaaseeas 247
(2T Lo LT == Ta T AT T o = TS 248
2V AN =YY o oW Sy { £ =Y 4 o DO OSSO ST P PR PO OO PRPPTRPRPON 250
D L=] [UL) o =T o 4 TP P PP P PR OR OO PRPRPOOTOON 253
=L@ UL Y01) =T o o TSRS 255
Y=Y AN =YY@ TU L YU) o =Y o RN 256
(D L =[O0 o 0N) =T o o [P NN 259
File NAVIZAtioN N 1/O ..uiiiiiieiii ettt ettt ettt e etae e tee e s teeetae e sabeeeabeesabeeetseesabeeesseesabeeeaseesabeesnseesn 261

Vi
[

' tutorialspoint

SIMPLYEASYLEARNINE

Java

] L @ 1O T P USSP PPPRPPPPON 262

D g=Tot ol g =T o T I 1V P PO PPPPPT 272

(R [g Y= DT g=Tol o] 4 [T PP P PO PP OU OO PPN 273

19. JaVa — EXCEPLIONSouiiiiiiiiiiiiiiiiiiiiiiiiiisiiiinriassiiesstrsssassssssssansssasssssssssasssssssssssssssssssssssssssnsssssssssssssnnnnnnes 274
EXCEPLION HIBIArCRY ...coiiiiiiii ettt ettt e b e st e bt e e st e e sae e e sabeesnneesabeesnneens 275
BUITE-IN EXCEPTIONS .ttt ettt ettt et e s e e bt e shb e e bt e e s ab e e e me e e sabeeeneeesmbeesnseesaneesnneess 276
EXCEPLIONS IMETNOMS ...ttt sttt et e ht e st e bt e e sab e e sab e e sabeesaseesabeesanee s 278

(07] ol oY1 F el T el=T o o Yo Y-SR 279
VU] o] LN @ el T 2] o Yol S 280
Catching Multiple TYPe Of EXCEPTIONS ...cceiiuiiieeeiiiieceieee e sitee e ettt e eetee e e st e e e eaee e e ssasaeeestaeeessreeessnsseeessseaanns 281
The ThroWs/TRIOW KEYWOIASccuveeeiiiiiiecciie ettt st eeee s te e tee e stveeette e sabeestaeesabaesabeesaseesaseesaraesaseesaraesarenns 281
IS R 1A 2] Lo ol SRS 282
THE trY-WItN-TESOUICES ...cooutiiiiiiiiieetee ettt ettt st e st s bt e s it e e st e e s ab e e sabeesabeesabeesaneesareesnneens 284
USEr-defin@d EXCEPIIONS. ...ttt ettt st e et e st e et e st e e st e e sabeeeaseesabeesnseesabeesnneens 286
COMMON EXCEPTIONS ..cnitiiiiiiiiee ettt ettt e et e st e st e s s e e e s e me e e e s ambne e s s beeesenreeesannneessaraneeeas 289

20. JaVa = INNEI ClaSSES...uuueiiiiiiiiiiiinntiiiiiiiiisisnetetiiissssssssseessssssssssssssessssssssssssssssssssssssssssesssssssssssssessssssssssnns 290
V=T 2=To O T O ST PRSP 290
Inner Classes (NON-static NeStEd ClaSSES)uuiiiiiuiieeeiiiieeciiee e citeeeeste e e eeire e e s tr e e e e ere e e seavaeeesnbseeeestaeesnsanas 291
ACCESSING The Private IMEIMDEISviiiciiee ettt et e e e et e e e st e e e eebbee e stbeaeesstaeeeessaeesnnseeas 292
V=g ToTo BT or= | I o o Y=Y o O - T3 O ST PRPTOPSPTIN 293
ANONYMOUS INNEE CIASS ...vviiiiiiiieeeiiee e eciteeeiite e e erite e e eetaeeesteeeeettaeeeessaeesasaeaaaastseeeasssaessssasesassseesassseesassens 294
ANoNYMOUS INNEr Class @S AFGUMENTcoiuiiiiieiitertte ettt et e sttt et e st e e bt e st e e s bt e sabeesbeesabeeebeesabeesneenane 295
) L1 (ol N LT =T N P T SUUI 296
JAVA - OBJECT ORIENTED.....cettttiieiiiieiiieetiiieeee e e eeeeettiieeeseeeeesesestnseseseseeesessannsesesssessnsnnnnsenenens 299
T Y Tl [01T =TT o =N 300
(L= g 1o R =N ATV o o [PPSR 300

= 0] o] 1S 0T 1S UUP 300
TRE SUPEE KEYWOIT ..ottt e e e e st e e e e e s e a e e e e e e e sesanebaaeeeeeseanstaaseeaseesansasseaeesssansssees 302
INVOKING SUPEICIASS CONSTIUCTON ...vviiieiiiiiiiiiiiee ettt et e e e e e et r e e e e e e e saata e e e e e s sesnsbaareeeeeeenansrareeeens 305

AN 0= R T o] 11 JS SRR 306

The INStANCEOT KEYWOITeiiieiiiieciiee ettt e st e e et e e e et e e e st te e e e sateeesaasaeeesssaeeeeneeeesnnseens 308

[VAT AN = T o 1] 1o SR 309
Y7 2oLl a1 a 1T 1 €= o ol PSR 309

22. JAVA — OVEITIAING ccceeeiiiiiiiiiiiiiiiiieieieteeteeeeeeteeesesesessnssnsnnnns 311
Rules for Method OVEITIAING.........uuiiiiiiiieiee et et e e e e e st e e e e e e s e s et aaaeeaeeesnansaaseaeans 313
USING the SUPEE KEYWOITuviiiiiiiiiiiiiiee ettt e ettt e e e e e et e e e e e e e e s abaaeeeeeeeseasbaeaeaaaeesanssssaeesaaesensssnnns 314

P T F 1V el oY (V7 s oY o o] 11 4 T 315
VIPEURL IMIEENOTS ...ttt et e e e s bt e e s s a bt e e s s abbee e sabbeeesaabeeeseneaeesaasaeas 316

N NV Y <1 4 Yo 4 o N 320
ADSEIACT ClaSS veenuieeiiieeieeeite ettt ettt e st e st e s bt e s a e e sabeesa b e e sabeesabeeeabee s beesbee s beeebee s beeeneeeate 320
INNEriting the ADSTIACt Class.......ciiiciieiiiiieeceiee e cee et r e e e e et e e s e e e s e e e e esteeesnnsaeseannseeeensteeesnnnnnas 323

JAY o1 i =T Y 1=1 d o Vo o OO OO SRR POPUPOPTRRPPPRRTPPRIOt 324

Vii

[

' tutorialspoint

SIMPLYEASYLEARNINE

25.

26.

27.

JAVA — ADVANCED

28.

29.

Java — ENcapsulationeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesesssssssssssssssssssssen
Benefits of ENCapsulationccveivciiee e

Java — INterfacesccoveeivieeiiiiieeiiite e
Declaring INterfaces........coviiiiieiiiieeie e
Implementing INterfacesccoovieiiiiiiiei e
EXtending INTerfacesc.coveeiiiiiiienieee e
Extending Multiple INterfacesccceevieriiiinieniiceec e
TagEING INTEITACES .ooceeeie et

NV Il o Tl - - LTSN
Creating @ PACKAZE ...ccccuviee ettt et
The iIMPOrt KEYWOIdcccuvieeeiiieeceeee et e eree e e e e e e e
The Directory Structure of Packagescccceevvieeiecieiiccieee e
Set CLASSPATH System Variable.......ccccooiierieiinieniiieieeeceeeeeeeeee e

Java — Data StrUCTUreS......ccuuuuiiiiiiiiirinniiiiiiniiinnnnsssssninnnssssssssssnnnssnsssses
The ENUMEIAtION ..eeeeeei ettt ettt trree e e e e e e aaeeeaeeeean
B I =T 2 T Y=Y SRR
B I LIV =1 (oY S SS PR
THE STACK et e e et e e e ara e e eanes
The DICLIONAIY couvvieeccieee ettt e e e e are e e e are e e e ata e e e e aaee e eaaeas
The Hashtable........ooouiiiieeccee e e
B I =T e o T=Y o =SS

Java — Collections FrameworkKeeeeeeeeeeeeeeeeeeeeeeneeeeeeesessssssesssssssssees
The Collection INterfaces.....cccvvieiecieee e
The Collection INtErfaceccecveeeeeciie e
The List INteITaCe ..eeieeeiie ettt e
The Set INTEITACE ..occcceeiie i et e
The SortedSet INterface.......ccocuveeecciie e e e
The Map INtEIfaCE ..ccuveei e e e
The Map.Entry INterface.......coocveeeeecieeecee e e
The SortedMap INTErfaceccocvveeieciee e e
The Enumeration INterface.......ccccvvecieeiicieee et e
The Collection CIasSEScccuieieiiiieiiieeecteeeesee e e e ssre e e e sree e s saee e e eaaes
The LinkedList CIassccovcueeeeiiiieceiee s e e e e e e
The ArrayList Class....cccouiiiiiiee e e e e e e
The HashSet Classcciiiiiiiiiiee et e e e e
The LinkedHashSet Classcuiiiiiciiiiiiee et e e
The TreeSEt Class....uuui ettt e e e strree e e e e e e e eabaareeaeaeean
The HashMap Class.....ccocuiiiiiieieecciiieee ettt e e e e e e e ebaar e e e e e
The TreeMap Classeeiivceeeeeiiieeeeeee e eee e e stee e e e e e e e e e seae e e e nee e e sanes
The WeakHashMap Classccccvveeieciereiiieee e seee e e
The LinkedHashMap Classccvueeeeiereieiiee e eeee e e e
The IdentityHashMap Classueveeiereiiieee et
THe VECLOI ClasS ..uuiiieiieeiiiiiieee ettt e et e e e e ttra e e e e e e e s eabaareeaaeeean
The StACK Class ...uvvvieeeiieiiiiiee e e et e e e e e abaa e e e e e

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

30.

31.

32.

33.

34.

35.

Java

THE DICTIONAIY ClASS ..uvveeiieiiieieiiie e et e ettt e e ettt e e sttt e e e st e e e esaeteeessaeeeesstaeesasseeeesssseeeassaeesansaeeesssseesansseeesnnsnees 430
LAY o T LT = ol RSP 431
THE Hashtable Class....cccuuiiuiiiiiiiiieeee ettt s e st sa e et e e sa b e e s ate e sabeesabeesabeesaseesabaesaseesabaenaseess 433
THE PrOPErtiEs Class ...cc.eiiiuiieiiiiiieeite ettt ettt e s e e st e sab e st e e sa bt e s at e e sabeeeab e e sabeeeaeeesabeesnneesmreenaneess 437
THE BItSET ClasS .uvveieeuiiieiiiiee ittt e ettt e erite e s sttt e e sttt e e s sttt e e s saateeesaaeeesssbeeesaasteeesabeeeessbaeesnsstaesanseeeesnnsaeesnnseens 440
The Collection AIZOITERMS ... et sttt et sab e s b e sar e e st e e sareesaeee s 444
(Lo X T ol U KR Y 1 =T - | o S USRS 449
HOW t0 USE @ COMPATAtOr ? coiiiiiiiiiiiee e e e cctiiteee e e sttt e e e e e s et e e e e e s seaaata e e e e e e sesannbaaeeeessesnssaaaeeeesessnnsrnneneens 453
SUIMIMIATY oot e et e e e e e e e e e et e e et e e et et et et e e et e e e e et eearenans 455
N R =T 4 =T 4 oS 456
LCT=T o 1=T ol Y/ =1 d oo T PP P TS TOPPTOPRRO 456
SLo TV g Yo I=Te B RV o Tl Y- [g [(=] SR 458
GENEIIC ClaSSES .. ciiiiiiiee e e ettt e e e e ettt et e e e ee et e e e e e e e e e st baaeeeeeeesessbaaeaaeeeesassssaeaeaaesaasssaeseaeeeensnranseeeesannes 459
Java — Serialization.....cccccueeiiiiiiiiiirni s s 461
SErIAlIZING AN OBJECT . .eeeiii ittt s bttt sab e bt e s ab e e bt e s at e e bt e e s aaeebe e e aneenees 462
DeSErialiZiNg @N ODJECT ...coiiiiiiii ettt e s et e s e e bt e st e ht e st e e at e sar e e st e e sareeeanee s 463
BNV Il L= AT] o (AT Y-S5 N 465
L0 2 I o o o= 1] 1 = PP TT 465
URL Cl1ass MELNOTS ...veiiiiiiiiiiiiesies ettt sttt sttt e st e st e sabe e sabaesabeesabeesabeesabaesaseesabaesnseesn 466
URLCONNECLIONS Class MELNOTSeiiiiiiiiiiiie sttt st st st e s e sabe e sbeesabaesasee s 469
YT A e T ={ =T 101 101 Lo V=SSP 472
SErverSOCKEt Class IMELNOMUSeeeii ittt e e ee st e e e e e e e bbr e e e e e e e seeataraeeeaeeeennnrreseeeeeannes 473
SOCKET Class IMETNOUScoeiiereeee ettt ee et e e e e e e tb e e e e e e e e s e abaseeeeeeesenasasaeeeaeesennnraeseaeeeennes 474
TaT=3 9N fo [N @ - T Y =1 o o SR 476
Yo 1ol =y A @ 1T Bl 37 [o' LSRR 476
Yo Tol G YT VLT g o T T o] o1 [RUP P 478
Y Y=Ly e [T =38 0y - | U STRNN 480
R e Lo BT (0] o1 LS = o - Y| PR 480
SENA AN HTIMIL E-M@il.ciniiiiiieiiie ettt ettt e sttt e e sttt e e e sa bt e e e s bt e e e sabbeeesaabaeesenteeesnneeas 482
Send Attachment iN E-Mail.......cooiiiiie e sttt e e et e e ettt e e sbb e e e s sabeeesenteeesnreeas 484
User AULhENTICAtION Part......coiioieii e ettt e e et e e e et e e e saa e e e esstaeeesnneeeesnseeeesnsaeenannns 486
LEXVE Il (Y V1L 01T T [4= N 487
[N Yo TN = T I 41T Yo TS 487
TRFEAM PrIOTIIES cuveieiieitee ettt ettt et s e e sa b e s at e e sab e e sabe e sabeesabeesabeesabeesabeesabeesabaenaseenn 488
Create a Thread by Implementing a Runnable INterfacecccccooiiiiieiiiicccee e 488
Create a Thread by Extending @ Thread Classceiiiiiiiiiiiiiee ettt e e e arre e e e e e e saarae e e e e e e eaas 490
TIIrEAA IMETNOTS ...ttt et e e st e e e sa bt e e s abb e e e sabbe e e sabeeesaabbeessabbeeeennbaeesansaeas 493
Major Java Multithreading CONCEPLS ..ot e e e e e st e e e e e e e saabae e e e e e eesansraseaeeas 498
THhread SYNCNIONIZATIONuviiiii e e e e e et e e e e e s e b b b e e e e e e sesastaaseeeeeesannbasseaeaeesansneees 498
Interthread CoOmMMUNICATIONciiiieiii ettt e s e e sat e e st e e sateesabeesabeesabeesaneens 503
THIEAA DEAAIOCK ... ettt ettt ettt e st sab e s e e s at e e sa b e e sate e sabeesabeesabeesabeesabeesabeesabaenaneesn 506
TRFEA CONEION ittt ettt st sae e e s at e e s at e e sh b e e bt e e sbte e bt e e sabeesabeesabeesabeesabeesaseesaraenaseens 509
JAVA — APPIEE BASICS .cevvrereeereeeeeeeeeeeeeeeeeeeeseesssessnssnnnns 514
[(N @Yo T} - o [Y o] o] L] SRR 514
Y o [T o YAV oY o [Y o o] [SRR 515

ix
[

' tutorialspoint

SIMPLYEASYLEARNINE

36.

Java

LI o] o 1= A 1 - 1SS 515
INVOKING QN APPIBT ... ettt c e e et e e et e e e st e e e e ate e e s asaeeesateeeeassteeesssaeeesssseeeasteeesansnnas 516
[I\ TR T] o] =] o - = SR 516
HTIML AtErDULE REFEIENCE oottt et e e s st e e s be e e saeae e s s nbbeessateeesnnaeas 518
HTIMIL EVENTS REFEIENCE ...vviiieeiiee ettt ettt ettt s e e sttt e st e e s sabt e e e ssbeeesasaeessnbbeesesteeesnnnaeas 520
Getting APPIEt PaAramEterS.....cociiiiieeie ettt ettt ettt e ae e et aae s be e e areeneas 525
SPeCifying APPIEt PArameLersoouiiiiiiiieeiie ettt st s bbb s nee e 526
Application CONVErSioN 10 APPIELS ...eiiicuriee e eeiee et e et e e et e e et e e e s e e e e ttr e e eesreeesssaeeesstaeeeennsaeesanseeas 526
Y=Y oYl =TT |11 YRS 527
(DT E o] 1Y oY= a0 =TSSR 529
[1Y o= 1Y T Lo SRS 531
Java — Documentation COMMENTES.......eeeeeeemmeeeeememeeemeeeeeeeiieeiieeiieeeeeeeeeeeeeeesssesss 533
AV =L o1 o [o Yol PSP 533
THE JAVAUOC TGS -.eeeuveeeuiiieiieeite ettt ettt ettt ettt e sit e sbe e e s ht e e s bt e e sat e e s ae e e sabeeeabeesateesheeesabeeeaseesabeesaseesabeennseesabeenaneesn 534

X

[

\ tutorialspoint

SIMPLYEASYLEARNINE

Java - Basics

1. Java—Overview

Java programming language was originally developed by Sun Microsystems which was
initiated by James Gosling and released in 1995 as core component of Sun Microsystems'
Java platform (Java 1.0 [J2SE]).

The latest release of the Java Standard Edition is Java SE 8. With the advancement of Java
and its widespread popularity, multiple configurations were built to suit various types of
platforms. For example: J2EE for Enterprise Applications, J2ME for Mobile Applications.

The new]2 versions were renamed as Java SE, Java EE, and Java ME respectively. Java
is guaranteed to be Write Once, Run Anywhere.

Java is:

e Object Oriented: In Java, everything is an Object. Java can be easily extended
since it is based on the Object model.

¢ Platform Independent: Unlike many other programming languages including C
and C++, when Java is compiled, it is not compiled into platform specific machine,
rather into platform independent byte code. This byte code is distributed over the
web and interpreted by the Virtual Machine (JVM) on whichever platform it is being
run on.

e Simple: Java is designed to be easy to learn. If you understand the basic concept
of OOP Java, it would be easy to master.

e Secure: With Java's secure feature it enables to develop virus-free, tamper-free
systems. Authentication techniques are based on public-key encryption.

¢ Architecture-neutral: Java compiler generates an architecture-neutral object
file format, which makes the compiled code executable on many processors, with
the presence of Java runtime system.

¢ Portable: Being architecture-neutral and having no implementation dependent
aspects of the specification makes Java portable. Compiler in Java is written in
ANSI C with a clean portability boundary, which is a POSIX subset.

¢ Robust: Java makes an effort to eliminate error prone situations by emphasizing
mainly on compile time error checking and runtime checking.

e Multithreaded: With Java's multithreaded feature it is possible to write programs
that can perform many tasks simultaneously. This design feature allows the
developers to construct interactive applications that can run smoothly.

e Interpreted: Java byte code is translated on the fly to native machine
instructions and is not stored anywhere. The development process is more rapid
and analytical since the linking is an incremental and light-weight process.

¢ High Performance: With the use of Just-In-Time compilers, Java enables high
performance.

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

o Distributed: Java is designed for the distributed environment of the internet.

e Dynamic: Java is considered to be more dynamic than C or C++ since it is
designed to adapt to an evolving environment. Java programs can carry extensive
amount of run-time information that can be used to verify and resolve accesses
to objects on run-time.

History of Java

James Gosling initiated Java language project in June 1991 for use in one of his many set-
top box projects. The language, initially called ‘Oak’ after an oak tree that stood outside
Gosling's office, also went by the name ‘Green’ and ended up later being renamed as Java,
from a list of random words.

Sun released the first public implementation as Java 1.0 in 1995. It promised Write Once,
Run Anywhere (WORA), providing no-cost run-times on popular platforms.

On 13 November, 2006, Sun released much of Java as free and open source software
under the terms of the GNU General Public License (GPL).

On 8 May, 2007, Sun finished the process, making all of Java's core code free and open-
source, aside from a small portion of code to which Sun did not hold the copyright.

Tools You Will Need

For performing the examples discussed in this tutorial, you will need a Pentium 200-MHz
computer with a minimum of 64 MB of RAM (128 MB of RAM recommended).

You will also need the following softwares:
e Linux 7.1 or Windows xp/7/8 operating system
e JavalDK 8

e Microsoft Notepad or any other text editor

This tutorial will provide the necessary skills to create GUI, networking, and web
applications using Java.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Try it Option

We have provided you with an option to compile and execute available code online. Just
click the Try it button avaiable at the top-right corner of the code window to compile and
execute the available code. There are certain examples which cannot be executed online,
so we have skipped those examples.

public class MyFirstJavaProgram {

public static void main(String []args) {
System.out.println("Hello World");

}

There may be a case that you do not see the result of the compiled/executed code. In
such case, you can re-try to compile and execute the code using execute button available
in the compilation pop-up window.

What is Next?

The next chapter will guide you to how you can obtain Java and its documentation. Finally,
it instructs you on how to install Java and prepare an environment to develop Java
applications.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

2. Java - Environment Setup

In this chapter, we will discuss on the different aspects of setting up a congenial
environment for Java.

Try it Option Online

You really do not need to set up your own environment to start learning Java programming
language. Reason is very simple, we already have Java Programming environment setup
online, so that you can compile and execute all the available examples online at the same
time when you are doing your theory work. This gives you confidence in what you are
reading and to check the result with different options. Feel free to modify any example
and execute it online.

Try the following example using Try it option available at the top right corner of the
following sample code box:

public class MyFirstJavaProgram {

public static void main(String []args) {
System.out.println("Hello World");

}

For most of the examples given in this tutorial, you will find the Try it option, which you
can use to execute your programs and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Java programming language, then
this section guides you on how to download and set up Java on your machine. Following
are the steps to set up the environment.

Java SE is freely available from the link Download Java. You can download a version based
on your operating system.

Follow the instructions to download Java and run the .exe to install Java on your machine.
Once you installed Java on your machine, you will need to set environment variables to
point to correct installation directories:

Setting Up the Path for Windows

Assuming you have installed Java in c:\Program Files\java\jdk directory:

e Right-click on 'My Computer' and select 'Properties’.

e Click the 'Environment variables' button under the 'Advanced' tab.

\tutorials point

SIMPLYEASYLEARMNINIEG

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Java

e Now, alter the 'Path' variable so that it also contains the path to the Java
executable. Example, if the path is currently set to 'C:\WINDOWS\SYSTEM32', then
change your path to read 'C:\WINDOWS\SYSTEM32;c:\Program
Files\java\jdk\bin'.

Setting Up the Path for Linux, UNIX, Solaris, FreeBSD

Environment variable PATH should be set to point to where the Java binaries have been
installed. Refer to your shell documentation, if you have trouble doing this.

Example, if you use bash as your shell, then you would add the following line to the end
of your '.bashrc: export PATH=/path/to/java:$PATH'

Popular Java Editors

To write your Java programs, you will need a text editor. There are even more
sophisticated IDEs available in the market. But for now, you can consider one of the
following:

¢ Notepad: On Windows machine, you can use any simple text editor like Notepad
(Recommended for this tutorial), TextPad.

¢ Netbeans: A Java IDE that is open-source and free, which can be downloaded
from http://www.netbeans.org/index.html.

e Eclipse: A Java IDE developed by the eclipse open-source community and can be
downloaded from http://www.eclipse.org/.

What is Next?

Next chapter will teach you how to write and run your first Java program and some of the
important basic syntaxes in Java needed for developing applications.

w tutorialspoint

http://www.netbeans.org/index.html
http://www.eclipse.org/

3. Java—Basic Syntax

When we consider a Java program, it can be defined as a collection of objects that
communicate via invoking each other's methods. Let us now briefly look into what do class,
object, methods, and instance variables mean.

¢ Object - Objects have states and behaviors. Example: A dog has states - color,
name, breed as well as behavior such as wagging their tail, barking, eating. An
object is an instance of a class.

e Class - A class can be defined as a template/blueprint that describes the
behavior/state that the object of its type supports.

¢ Methods - A method is basically a behavior. A class can contain many methods.
It is in methods where the logics are written, data is manipulated and all the
actions are executed.

e Instance Variables - Each object has its unique set of instance variables. An
object's state is created by the values assigned to these instance variables.

First Java Program

Let us look at a simple code that will print the words Hello World.

public class MyFirstJavaProgram {
/* This is my first java program.
* This will print 'Hello World' as the output

*/

public static void main(String []args) {
System.out.println("Hello World"); // prints Hello World

}

Let's look at how to save the file, compile, and run the program. Please follow the
subsequent steps:

e Open notepad and add the code as above.
e Save the file as: MyFirstJavaProgram.java.

e Open a command prompt window and go to the directory where you saved the
class. Assume it's C:\.

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

Type 'javac MyFirstlavaProgram.java' and press enter to compile your code. If
there are no errors in your code, the command prompt will take you to the next
line (Assumption : The path variable is set).

Now, type ' java MyFirstlavaProgram ' to run your program.

You will be able to see ' Hello World ' printed on the window.

c:\»>
c:\»

javac MyFirstJavaProgram.java

java MyFirstJavaProgram

Hello World

Basic Syntax

About Java programs, it is very important to keep in mind the following points.

Case Sensitivity - Java is case sensitive, which means
identifier Helloand hello would have different meaning in Java.

Class Names - For all class names the first letter should be in Upper Case.

If several words are used to form a name of the class, each inner word's first letter
should be in Upper Case.

Example: class MyFirstiavaClass
Method Names - All method names should start with a Lower Case letter.

If several words are used to form the name of the method, then each inner word's
first letter should be in Upper Case.

Example: public void myMethodName()

Program File Name - Name of the program file should exactly match the class
name.

When saving the file, you should save it using the class name (Remember Java is
case sensitive) and append '.java' to the end of the name (if the file name and the
class name do not match, your program will not compile).

Example: Assume 'MyFirstlavaProgram' is the class name. Then the file should
be saved as 'MyFirstlavaProgram.java'

public static void main(String args[]) - Java program processing starts from
the main() method which is a mandatory part of every Java program.

' tutorialspoint

SIMPLYEASYLEARNINE

Java

Java ldentifiers

All Java components require names. Names used for classes, variables, and methods are
called identifiers.

In Java, there are several points to remember about identifiers. They are as follows:

e All identifiers should begin with a letter (A to Z or a to z), currency character ($)
or an underscore (_).

o After the first character, identifiers can have any combination of characters.
e A key word cannot be used as an identifier.

e Most importantly, identifiers are case sensitive.

e Examples of legal identifiers: age, $salary, _value, __1_value.

e Examples of illegal identifiers: 123abc, -salary.

Java Modifiers

Like other languages, it is possible to modify classes, methods, etc., by using modifiers.
There are two categories of modifiers:

¢ Access Modifiers: default, public , protected, private

¢ Non-access Modifiers: final, abstract, strictfp

We will be looking into more details about modifiers in the next section.

Java Variables

Following are the types of variables in Java:

e Local Variables
e Class Variables (Static Variables)

¢ Instance Variables (Non-static Variables)

Java Arrays

Arrays are objects that store multiple variables of the same type. However, an array itself
is an object on the heap. We will look into how to declare, construct, and initialize in the
upcoming chapters.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Java Enums

Enums were introduced in Java 5.0. Enums restrict a variable to have one of only a few
predefined values. The values in this enumerated list are called enums.

With the use of enums it is possible to reduce the number of bugs in your code.

For example, if we consider an application for a fresh juice shop, it would be possible to
restrict the glass size to small, medium, and large. This would make sure that it would not
allow anyone to order any size other than small, medium, or large.

Example

class FreshJuice {

enum FreshJuiceSize{ SMALL, MEDIUM, LARGE }

FreshJuiceSize size;

public class FreshJuiceTest {

public static void main(String args[]){
FreshJuice juice = new FreshJuice();
juice.size = FreshJuice.FreshJuiceSize.MEDIUM ;

System.out.println("Size: + juice.size);

The above example will produce the following result:

Size: MEDIUM

Note: Enums can be declared as their own or inside a class. Methods, variables,
constructors can be defined inside enums as well.

Java Keywords

The following list shows the reserved words in Java. These reserved words may not be
used as constant or variable or any other identifier names.

abstract assert boolean break
byte case catch char
10
(] . = =
tutorialspoint

SIMPLYEASYLEARNINE

Java

class const continue default
do double else enum
extends final finally float
for goto if implements
import instanceof int interface
long native new package
private protected public return
short static strictfp super
switch synchronized this throw
throws transient try void
volatile while
Comments in Java
Java supports single-line and multi-line comments very similar to C and C++. All
characters available inside any comment are ignored by Java compiler.
public class MyFirstJavaProgram{
/* This is my first java program.
* This will print 'Hello World' as the output
* This is an example of multi-line comments.
*/
public static void main(String []args){
// This is an example of single line comment
/* This is also an example of single line comment. */
System.out.println("Hello World");
}
}
11
®

\ tutorialspoint

SIMPLYEASYLEARNINE

Java

Using Blank Lines

A line containing only white space, possibly with a comment, is known as a blank line, and
Java totally ignores it.

Inheritance

In Java, classes can be derived from classes. Basically, if you need to create a new class
and here is already a class that has some of the code you require, then it is possible to
derive your new class from the already existing code.

This concept allows you to reuse the fields and methods of the existing class without having
to rewrite the code in a new class. In this scenario, the existing class is called the
superclass and the derived class is called the subclass.

Interfaces

In Java language, an interface can be defined as a contract between objects on how to
communicate with each other. Interfaces play a vital role when it comes to the concept of
inheritance.

An interface defines the methods, a deriving class (subclass) should use. But the
implementation of the methods is totally up to the subclass.

What is Next?

The next section explains about Objects and classes in Java programming. At the end of
the session, you will be able to get a clear picture as to what are objects and what are
classes in Java.

12

9 Vtutorialspoint

SIMPLYEASYLEARNINE

4. Java—Objects & Classes

Java is an Object-Oriented Language. As a language that has the Object-Oriented feature,
Java supports the following fundamental concepts:

e Polymorphism

Inheritance

Encapsulation

Abstraction

Classes
Objects

Instance
Method

Message Parsing

In this chapter, we will look into the concepts - Classes and Objects.

e Object - Objects have states and behaviors. Example: A dog has states - color,
name, breed as well as behaviors — wagging the tail, barking, eating. An object is
an instance of a class.

e Class - A class can be defined as a template/blueprint that describes the
behavior/state that the object of its type support.

Objects in Java

Let us now look deep into what are objects. If we consider the real-world, we can find
many objects around us, cars, dogs, humans, etc. All these objects have a state and a
behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking,
wagging the tail, running.

If you compare the software object with a real-world object, they have very similar
characteristics.

Software objects also have a state and a behavior. A software object's state is stored in
fields and behavior is shown via methods.

So in software development, methods operate on the internal state of an object and the
object-to-object communication is done via methods.

13

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

Classes in Java

A class is a blueprint from which individual objects are created.

Following is a sample of a class.

public class Dog{
String breed;
int ageC

String color;

void barking(){
}

void hungry(){
}

void sleeping(){
}
}

A class can contain any of the following variable types.

¢ Local variables: Variables defined inside methods, constructors or blocks are
called local variables. The variable will be declared and initialized within the
method and the variable will be destroyed when the method has completed.

¢ Instance variables: Instance variables are variables within a class but outside
any method. These variables are initialized when the class is instantiated. Instance
variables can be accessed from inside any method, constructor or blocks of that
particular class.

e Class variables: Class variables are variables declared within a class, outside any
method, with the static keyword.

A class can have any number of methods to access the value of various kinds of methods.
In the above example, barking(), hungry() and sleeping() are methods.

Following are some of the important topics that need to be discussed when looking into
classes of the Java Language.

Constructors

When discussing about classes, one of the most important sub topic would be constructors.
Every class has a constructor. If we do not explicitly write a constructor for a class, the
Java compiler builds a default constructor for that class.

14

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Each time a new object is created, at least one constructor will be invoked. The main rule
of constructors is that they should have the same name as the class. A class can have
more than one constructor.

Following is an example of a constructor:

public class Puppy{

public Puppy(){
}

public Puppy(String name){

// This constructor has one parameter, name.

}

Java also supports Singleton Classes where you would be able to create only one instance
of a class.

Note: We have two different types of constructors. We are going to discuss constructors
in detail in the subsequent chapters.

How to Use Singleton Class?

The Singleton's purpose is to control object creation, limiting the number of objects to only
one. Since there is only one Singleton instance, any instance fields of a Singleton will occur
only once per class, just like static fields. Singletons often control access to resources,
such as database connections or sockets.

For example, if you have a license for only one connection for your database or your JDBC
driver has trouble with multithreading, the Singleton makes sure that only one connection
is made or that only one thread can access the connection at a time.

15

9 Vtutorialspoint

SIMPLYEASYLEARNINE

http://www.tutorialspoint.com/java/java_using_singleton.htm

Java

Implementing Singletons

Example 1

The easiest implementation consists of a private constructor and a field to hold its result,
and a static accessor method with a name like getInstance().

The private field can be assigned from within a static initializer block or, more simply,
using an initializer. The getlnstance() method (which must be public) then simply returns
this instance —

// File Name: Singleton.java

public class Singleton {

private static Singleton singleton = new Singleton();

/* A private Constructor prevents any other
* class from instantiating.
*/

private Singleton(){ }

/* Static 'instance' method */
public static Singleton getInstance() {
return singleton;
}
/* Other methods protected by singleton-ness */
protected static void demoMethod() {
System.out.println("demoMethod for singleton");

}

Here is the main program file, where we will create a singleton object:

// File Name: SingletonDemo.java
public class SingletonDemo {
public static void main(String[] args) {
Singleton tmp = Singleton.getInstance();
tmp.demoMethod();

16

9 Vtutorialspoint

SIMPLYEASYLEARNINIE

Java

This will produce the following result —

demoMethod for singleton

Example 2

Following implementation shows a classic Singleton design pattern:

public class ClassicSingleton {

private static ClassicSingleton instance = null;
private ClassicSingleton() {
// Exists only to defeat instantiation.
}
public static ClassicSingleton getInstance() {
if(instance == null) {
instance = new ClassicSingleton();
}

return instance;

P}

The ClassicSingleton class maintains a static reference to the lone singleton instance and
returns that reference from the static getlnstance() method.

Here, ClassicSingleton class employs a technique known as lazy instantiation to create the
singleton; as a result, the singleton instance is not created until the getInstance() method
is called for the first time. This technique ensures that singleton instances are created only
when needed.

Creating an Object

As mentioned previously, a class provides the blueprints for objects. So basically, an object
is created from a class. In Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class:

¢ Declaration: A variable declaration with a variable name with an object type.
¢ Instantiation: The 'new' keyword is used to create the object.

o Initialization: The 'new' keyword is followed by a call to a constructor. This call

initializes the new object.

17

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Following is an example of creating an object:

public class Puppy{

public Puppy(String name){
// This constructor has one parameter, name.

System.out.println("Passed Name is :" + name);

public static void main(String []args){
// Following statement would create an object myPuppy

Puppy myPuppy = new Puppy("tommy");

}

If we compile and run the above program, then it will produce the following result:

Passed Name is :tommy

Accessing Instance Variables and Methods

Instance variables and methods are accessed via created objects. To access an instance
variable, following is the fully qualified path:

/* First create an object */

ObjectReference = new Constructor();

/* Now call a variable as follows */

ObjectReference.variableName;

/* Now you can call a class method as follows */

ObjectReference.MethodName();

18

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Example

This example explains how to access instance variables and methods of a class.

Java

public class Puppy{

int puppyAge;

public Puppy(String name){
// This constructor has one parameter, name.

System.out.println("Name chosen is :" + name);

public void setAge(int age){
puppyAge = age;

public int getAge(){

on

System.out.println("Puppy's age is :" + puppyAge);

return puppyAge;

public static void main(String []args){
/* Object creation */

Puppy myPuppy = new Puppy("tommy");

/* Call class method to set puppy's age */
myPuppy.setAge(2);

/* Call another class method to get puppy's age */
myPuppy .getAge();

/* You can access instance variable as follows as well */

System.out.println("vVariable Value :" + myPuppy.puppyAge);

9 Vtutorialspoint

SIMPLYEASYLEARNINE

19

Java

If we compile and run the above program, then it will produce the following result:

Name chosen is :tommy
Puppy's age is :2
Variable Value :2

Source File Declaration Rules

As the last part of this section, let's now look into the source file declaration rules. These
rules are essential when declaring classes, import statements and package statements in
a source file.

e There can be only one public class per source file.
e A source file can have multiple non-public classes.

e The public class name should be the name of the source file as well which should
be appended by .java at the end. For example: the class name is public class
Employee{} then the source file should be as Employee.java.

o If the class is defined inside a package, then the package statement should be the
first statement in the source file.

o If import statements are present, then they must be written between the package
statement and the class declaration. If there are no package statements, then the
import statement should be the first line in the source file.

e Import and package statements will imply to all the classes present in the source
file. It is not possible to declare different import and/or package statements to
different classes in the source file.

Classes have several access levels and there are different types of classes; abstract
classes, final classes, etc. We will be explaining about all these in the access modifiers
chapter.

Apart from the above mentioned types of classes, Java also has some special classes called
Inner classes and Anonymous classes.

Java Package

In simple words, it is a way of categorizing the classes and interfaces. When developing
applications in Java, hundreds of classes and interfaces will be written, therefore
categorizing these classes is a must as well as makes life much easier.

20

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Import Statements

In Java if a fully qualified name, which includes the package and the class name is given,
then the compiler can easily locate the source code or classes. Import statement is a way
of giving the proper location for the compiler to find that particular class.

For example, the following line would ask the compiler to load all the classes available in
directory java_installation/java/io:

import java.io.*;

A Simple Case Study

For our case study, we will be creating two classes. They are Employee and EmployeeTest.

First open notepad and add the following code. Remember this is the Employee class and
the class is a public class. Now, save this source file with the name Employee.java.

The Employee class has four instance variables - name, age, designation and salary. The
class has one explicitly defined constructor, which takes a parameter.

import java.io.*;

public class Employee{

String name;
int age;
String designation;

double salary;

// This is the constructor of the class Employee
public Employee(String name){
this.name = name;
}
// Assign the age of the Employee to the variable age.
public void empAge(int empAge){
age = empAge;
}
/* Assign the designation to the variable designation.*/
public void empDesignation(String empDesig){
designation = empDesig;
}

/* Assign the salary to the variable salary.*/

21

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

public void empSalary(double empSalary){

salary = empSalary;

}
/* Print the Employee details */

public void printEmployee(){

System.out.println("Name:"+ name);

System.out.println("Age:" + age);

System.out.println("Designation:" + designation);

System.out.println("Salary:" + salary);

}

As mentioned previously in this tutorial, processing starts from the main method.
Therefore, in order for us to run this Employee class there should be a main method and
objects should be created. We will be creating a separate class for these tasks.

Following is the EmployeeTest class, which creates two instances of the class Employee
and invokes the methods for each object to assign values for each variable.

Save the following code in EmployeeTest.java file.

import java.io.*;

public class EmployeeTest{
public static void main(String args[]){
/* Create two objects using constructor */
Employee empOne = new Employee("James Smith");

Employee empTwo = new Employee("Mary Anne");

// Invoking methods for each object created
empOne.empAge(26);
empOne.empDesignation("Senior Software Engineer");
empOne.empSalary(1000);
empOne.printEmployee();
empTwo.empAge(21);
empTwo.empDesignation("Software Engineer");
empTwo.empSalary(500);
empTwo.printEmployee();

}}

22

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Now, compile both the classes and then run EmployeeTest to see the result as follows:

C:\> javac Employee.java

C:\> javac EmployeeTest.java

C:\> java EmployeeTest

Name:James Smith

Age:26

Designation:Senior Software Engineer
Salary:1000.0

Name:Mary Anne

Age:21

Designation:Software Engineer

Salary:500.0

What is Next?

In the next session, we will discuss the basic data types in Java and how they can be used

when developing Java applications.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

23

5. Java—Basic Datatypes

Variables are nothing but reserved memory locations to store values. This means that
when you create a variable you reserve some space in the memory.

Based on the data type of a variable, the operating system allocates memory and decides
what can be stored in the reserved memory. Therefore, by assigning different datatypes
to variables, you can store integers, decimals, or characters in these variables.

There are two data types available in Java:

e Primitive Datatypes
e Reference/Object Datatypes

Primitive Datatypes

There are eight primitive datatypes supported by Java. Primitive datatypes are predefined
by the language and named by a keyword. Let us now look into the eight primitive data
types in detail.

byte:
¢ Byte data type is an 8-bit signed two's complement integer
e Minimum value is -128 (-277)
e Maximum value is 127 (inclusive)(2”7 -1)
e Default valueis 0

e Byte datatype is used to save space in large arrays, mainly in place of integers,
since a byte is four times smaller than an integer

e Example: byte a = 100, byte b = -50

short:

e Short datatype is a 16-bit signed two's complement integer
e Minimum value is -32,768 (-2715)
e Maximum value is 32,767 (inclusive) (215 -1)

e Short datatype can also be used to save memory as byte data type. A short is 2
times smaller than an integer

e Default value is 0

24

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

Example: short s = 10000, short r = -20000

int:
e Int datatype is a 32-bit signed two's complement integer
e Minimum value is - 2,147,483,648 (-2731)
e Maximum value is 2,147,483,647(inclusive) (2731 -1)
¢ Integer is generally used as the default data type for integral values unless there
is a concern about memory.
e The default value is 0
e Example: int a = 100000, int b = -200000
long:
e Long datatype is a 64-bit signed two's complement integer
e Minimum value is -9,223,372,036,854,775,808 (-2763)
¢ Maximum value is 9,223,372,036,854,775,807 (inclusive) (27263 -1)
e This type is used when a wider range than int is needed
e Default value is OL
e Example: long a = 100000L, long b = -200000L
float:
e Float datatype is a single-precision 32-bit IEEE 754 floating point
e Float is mainly used to save memory in large arrays of floating point numbers
¢ Default value is 0.0f
o Float datatype is never used for precise values such as currency
e Example: float f1 = 234.5f
double:

double datatype is a double-precision 64-bit IEEE 754 floating point

This datatype is generally used as the default data type for decimal values,
generally the default choice

Double datatype should never be used for precise values such as currency

Default value is 0.0d

25

w tutorialspoint

Java

Example: double d1 = 123.4

boolean:

boolean datatype represents one bit of information

There are only two possible values: true and false

This datatype is used for simple flags that track true/false conditions
Default value is false

Example: boolean one = true

char datatype is a single 16-bit Unicode character
Minimum value is "\u0000' (or 0)

Maximum value is "\uffff' (or 65,535 inclusive)
Char datatype is used to store any character

Example: char letterA ='A'

Reference Datatypes

Reference variables are created using defined constructors of the classes. They are
used to access objects. These variables are declared to be of a specific type that
cannot be changed. For example, Employee, Puppy, etc.

Class objects and various type of array variables come under reference datatype.

Default value of any reference variable is null.

A reference variable can be used to refer any object of the declared type or any
compatible type.

Example: Animal animal = new Animal("giraffe");

Java Literals

A literal is a source code representation of a fixed value. They are represented directly in
the code without any computation.

Literals can be assigned to any primitive type variable. For example:

byte a

char a

68;
"

byte, int, long, and short can be expressed in decimal(base 10), hexadecimal(base 16) or
octal(base 8) number systems as well.

26

' tutorialspoint

SIMPLYEASYLEARNINE

Java

Prefix O is used to indicate octal, and prefix Ox indicates hexadecimal when using these
number systems for literals. For example:

int decimal = 100;
int octal = 0144;

int hexa = 0x64;

String literals in Java are specified like they are in most other languages by enclosing a
sequence of characters between a pair of double quotes. Examples of string literals are:

"Hello World"
"two\nlines"

"\"This is in quotes\

String and char types of literals can contain any Unicode characters. For example:

char a = "\uoeol';
String a = "\u@ool";

Java language supports few special escape sequences for String and char literals as well.

They are:
Notation Character represented
\n Newline (0x0a)
\r Carriage return (0x0d)
\f Formfeed (0x0c)
\b Backspace (0x08)
\s Space (0x20)
\t tab

27

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

\" Double quote
\' Single quote
\\ backslash
\ddd Octal character (ddd)
\UXXXX Hexadecimal UNICODE character (xxxx)
What is Next?

This chapter explained the various data types. The next topic explains different variable
types and their usage. This will give you a good understanding on how they can be used
in the Java classes, interfaces, etc.

28

LY ASYLEARNINE

m \ tutorialspoint

6. Java—Variable Types

A variable provides us with named storage that our programs can manipulate. Each
variable in Java has a specific type, which determines the size and layout of the variable's
memory; the range of values that can be stored within that memory; and the set of
operations that can be applied to the variable.

You must declare all variables before they can be used. Following is the basic form of a
variable declaration:

data type variable [= value][, variable [= value] ...] ;

Here data type is one of Java's datatypes and variable is the name of the variable. To
declare more than one variable of the specified type, you can use a comma-separated list.

Following are valid examples of variable declaration and initialization in Java:

int a, b, c; // Declares three ints, a, b, and c.
int a = 10, b = 10; // Example of initialization

byte B = 22; // initializes a byte type variable B.
double pi = 3.14159; // declares and assigns a value of PI.

char a = 'a'; // the char variable a iis initialized with value 'a

This chapter will explain various variable types available in Java Language. There are three
kinds of variables in Java:

e Local variables
e Instance variables

e Class/Static variables

Local Variables

e Local variables are declared in methods, constructors, or blocks.

e Local variables are created when the method, constructor or block is entered and
the variable will be destroyed once it exits the method, constructor, or block.

e Access modifiers cannot be used for local variables.
e Local variables are visible only within the declared method, constructor, or block.
e Local variables are implemented at stack level internally.

e There is no default value for local variables, so local variables should be declared
and an initial value should be assigned before the first use.

29

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

Example

Here, age is a local variable. This is defined inside pupAge() method and its scope is
limited to only this method.

public class Test{
public void pupAge(){
int age = ©;
age = age + 7;

System.out.println("Puppy age is : " + age);

public static void main(String args[]){
Test test = new Test();
test.pupAge();

}

This will produce the following result:

Puppy age is: 7

Example

Following example uses age without initializing it, so it would give an error at the time of
compilation.

public class Test{
public void pupAge(){
int age;
age = age + 7;

System.out.println("Puppy age is : " + age);

public static void main(String args[]){
Test test = new Test();
test.pupAge();

30

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

This will produce the following error while compiling it:

Test.java:4:variable number might not have been initialized

age = age + 7;

N

1 error

Instance Variables

Instance variables are declared in a class, but outside a method, constructor or any
block.

When a space is allocated for an object in the heap, a slot for each instance variable
value is created.

Instance variables are created when an object is created with the use of the
keyword 'new' and destroyed when the object is destroyed.

Instance variables hold values that must be referenced by more than one method,
constructor or block, or essential parts of an object's state that must be present
throughout the class.

Instance variables can be declared in class level before or after use.
Access modifiers can be given for instance variables.

The instance variables are visible for all methods, constructors and block in the
class. Normally, it is recommended to make these variables private (access level).
However, visibility for subclasses can be given for these variables with the use of
access modifiers.

Instance variables have default values. For numbers, the default value is 0, for
Booleans it is false, and for object references it is null. Values can be assigned
during the declaration or within the constructor.

Instance variables can be accessed directly by calling the variable name inside the
class. However, within static methods (when instance variables are given
accessibility), they should be called using the fully qualified name
. ObjectReference.VariableName.

31

' tutorialspoint

SIMPLYEASYLEARNINE

Example

Java

import java.io.*;

public class Employee{
// this instance variable is visible for any child class.

public String name;

// salary variable is visible in Employee class only.

private double salary;

// The name variable is assigned in the constructor.
public Employee (String empName){

name = empName;

// The salary variable is assigned a value.
public void setSalary(double empSal){

salary = empSal;

// This method prints the employee details.
public void printEmp(){

System.out.println("name + name);

System.out.println("salary :" + salary);

public static void main(String args[]){
Employee empOne = new Employee("Ransika");
empOne.setSalary(1000);
empOne.printEmp();

9 Vtutorialspoint

SIMPLYEASYLEARNINE

32

Java

This will produce the following result:

name

: Ransika

salary :1000.0

Class/static Variables

Class variables also known as static variables are declared with the static keyword
in a class, but outside a method, constructor or a block.

There would only be one copy of each class variable per class, regardless of how
many objects are created from it.

Static variables are rarely used other than being declared as constants. Constants
are variables that are declared as public/private, final, and static. Constant
variables never change from their initial value.

Static variables are stored in the static memory. It is rare to use static variables
other than declared final and used as either public or private constants.

Static variables are created when the program starts and destroyed when the
program stops.

Visibility is similar to instance variables. However, most static variables are
declared public since they must be available for users of the class.

Default values are same as instance variables. For numbers, the default value is 0;
for Booleans, it is false; and for object references, it is null. Values can be assigned
during the declaration or within the constructor. Additionally, values can be
assigned in special static initializer blocks.

Static variables can be accessed by calling with the class name
ClassName.VariableName.

When declaring class variables as public static final, then variable names

(constants) are all in upper case. If the static variables are not public and final, the
naming syntax is the same as instance and local variables.

33

' tutorialspoint

SIMPLYEASYLEARNINE

Java

Example

import java.io.*;
public class Employee{
// salary variable is a private static variable

private static double salary;

// DEPARTMENT is a constant
public static final String DEPARTMENT = "Development ";
public static void main(String args[]){

salary = 1000;

System.out.println(DEPARTMENT + "average salary:" + salary);

This will produce the following result:

Development average salary:1000

Note: If the variables are accessed from an outside class, the constant should be accessed
as Employee.DEPARTMENT

What is Next?

You already have used access modifiers (public & private) in this chapter. The next chapter
will explain Access Modifiers and Non-Access Modifiers in detail.

34

9 Vtutorialspoint

SIMPLYEASYLEARNINE

/. Java—Modifier Types

Modifiers are keywords that you add to those definitions to change their meanings. Java
language has a wide variety of modifiers, including the following:

e Java Access Modifiers

e Non Access Modifiers

Java Access Modifiers

Java provides a number of access modifiers to set access levels for classes, variables,
methods, and constructors. The four access levels are:

e Visible to the package, the default. No modifiers are needed.
e Visible to the class only (private).

e Visible to the world (public).

e Visible to the package and all subclasses (protected).

Default Access Modifier - No Keyword

Default access modifier means we do not explicitly declare an access modifier for a class,
field, method, etc.

A variable or method declared without any access control modifier is available to any other
class in the same package. The fields in an interface are implicitly public static final and
the methods in an interface are by default public.

Example

Variables and methods can be declared without any modifiers, as in the following
examples:

String version = "1.5.1";

boolean processOrder() {

return true;

Private Access Modifier - Private

Methods, variables, and constructors that are declared private can only be accessed within
the declared class itself.

Private access modifier is the most restrictive access level. Class and interfaces cannot be
private.

35

\tutorials point

SIMPLYEASYLEARMNINIEG

http://www.tutorialspoint.com/java/java_access_modifiers.htm
http://www.tutorialspoint.com/java/java_nonaccess_modifiers.htm

Java

Variables that are declared private can be accessed outside the class, if public getter
methods are present in the class.

Using the private modifier is the main way that an object encapsulates itself and hides
data from the outside world.

Example

The following class uses private access control:

public class Logger {
private String format;
public String getFormat() {
return this.format;
}
public void setFormat(String format) {

this.format = format;

}

Here, the format variable of the Logger class is private, so there's no way for other classes
to retrieve or set its value directly.

So, to make this variable available to the outside world, we defined two public
methods: getFormat(), which returns the value of format, and setFormat(String), which
sets its value.

Public Access Modifier - Public

A class, method, constructor, interface, etc. declared public can be accessed from any
other class. Therefore, fields, methods, blocks declared inside a public class can be
accessed from any class belonging to the Java Universe.

However, if the public class we are trying to access is in a different package, then the
public class still needs to be imported. Because of class inheritance, all public methods
and variables of a class are inherited by its subclasses.

Example

The following function uses public access control:

public static void main(String[] arguments) {
/...
}

The main() method of an application has to be public. Otherwise, it could not be called by
a Java interpreter (such as java) to run the class.

36

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Protected Access Modifier - Protected

Variables, methods, and constructors, which are declared protected in a superclass can be
accessed only by the subclasses in other package or any class within the package of the
protected members' class.

The protected access modifier cannot be applied to class and interfaces. Methods, fields
can be declared protected, however methods and fields in a interface cannot be declared
protected.

Protected access gives the subclass a chance to use the helper method or variable, while
preventing a nonrelated class from trying to use it.

Example

The following parent class uses protected access control, to allow its child class
override openSpeaker() method:

class AudioPlayer {
protected boolean openSpeaker(Speaker sp) {

// implementation details

class StreamingAudioPlayer {
boolean openSpeaker(Speaker sp) {

// implementation details

}

Here, if we define openSpeaker() method as private, then it would not be accessible from
any other class other than AudioPlayer. If we define it as public, then it would become
accessible to all the outside world. But our intention is to expose this method to its subclass
only, that's why we have used protected modifier.

Access Control and Inheritance

The following rules for inherited methods are enforced:

e Methods declared public in a superclass also must be public in all subclasses.

e Methods declared protected in a superclass must either be protected or public in
subclasses; they cannot be private.

e Methods declared private are not inherited at all, so there is no rule for them.

37

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Java Non-Access Modifiers

Java provides a number of non-access modifiers to achieve many other functionalities.

The static modifier for creating class methods and variables.

e The final modifier for finalizing the implementations of classes, methods, and
variables.

e The abstract modifier for creating abstract classes and methods.

e The synchronized and volatile modifiers, which are used for threads.

The Static Modifier

Static Variables

The static keyword is used to create variables that will exist independently of any instances
created for the class. Only one copy of the static variable exists regardless of the number
of instances of the class.

Static variables are also known as class variables. Local variables cannot be declared
static.

Static Methods

The static keyword is used to create methods that will exist independently of any instances
created for the class.

Static methods do not use any instance variables of any object of the class they are defined
in. Static methods take all the data from parameters and compute something from those
parameters, with no reference to variables.

Class variables and methods can be accessed using the class name followed by a dot and
the name of the variable or method.

Example

The static modifier is used to create class methods and variables, as in the following
example:

public class InstanceCounter {

private static int numInstances = 0;

protected static int getCount() {

return numInstances;

38

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

private static void addInstance() {

numInstances++;

InstanceCounter() {

InstanceCounter.addInstance();

public static void main(String[] arguments) {
System.out.println("Starting with " +

InstanceCounter.getCount() +

for (int i = 0; i < 500; ++i){

instances");

new InstanceCounter();

}
System.out.println("Created " +

InstanceCounter.getCount() + " instances");

}

This will produce the following result:

Started with @ instances

Created 500 instances

The Final Modifier

Final Variables

A final variable can be explicitly initialized only once. A reference variable declared final
can never be reassigned to refer to an different object.

However, the data within the object can be changed. So, the state of the object can be
changed but not the reference.

With variables, the final modifier often is used with static to make the constant a class
variable.

39

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{
final int value = 10;
// The following are examples of declaring constants:
public static final int BOXWIDTH = 6;
static final String TITLE = "Manager";

public void changeValue(){

value = 12; //will give an error

Final Methods

A final method cannot be overridden by any subclasses. As mentioned previously, the final
modifier prevents a method from being modified in a subclass.

The main intention of making a method final would be that the content of the method
should not be changed by any outsider.

Example

You declare methods using the final modifier in the class declaration, as in the following
example:

public class Test{
public final void changeName(){
// body of method

Final Classes

The main purpose of using a class being declared as final is to prevent the class from being
subclassed. If a class is marked as final then no class can inherit any feature from the final
class.

Example

public final class Test {
// body of class

40

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

The Abstract Modifier

Abstract Class

An abstract class can never be instantiated. If a class is declared as abstract then the sole
purpose is for the class to be extended.

A class cannot be both abstract and final (since a final class cannot be extended). If a class
contains abstract methods then the class should be declared abstract. Otherwise, a
compile error will be thrown.

An abstract class may contain both abstract methods as well normal methods.

Example

abstract class Caravan{
private double price;
private String model;
private String year;
public abstract void goFast(); //an abstract method

public abstract void changeColor();

Abstract Methods

An abstract method is a method declared without any implementation. The methods body
(implementation) is provided by the subclass. Abstract methods can never be final or
strict.

Any class that extends an abstract class must implement all the abstract methods of the
super class, unless the subclass is also an abstract class.

If a class contains one or more abstract methods, then the class must be declared abstract.
An abstract class does not need to contain abstract methods.

The abstract method ends with a semicolon. Example: public abstract sample();

41

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public abstract class SuperClass{

abstract void m(); //abstract method

class SubClass extends SuperClass{
// implements the abstract method
void m(){

The Synchronized Modifier

The synchronized keyword used to indicate that a method can be accessed by only one
thread at a time. The synchronized modifier can be applied with any of the four access
level modifiers.

Example

public synchronized void showDetails(){

The Transient Modifier

An instance variable is marked transient to indicate the JVM to skip the particular variable
when serializing the object containing it.

This modifier is included in the statement that creates the variable, preceding the class or
data type of the variable.

Example

public transient int limit = 55; // will not persist

public int b; // will persist

The Volatile Modifier

The volatile modifier is used to let the JVM know that a thread accessing the variable must
always merge its own private copy of the variable with the master copy in the memory.

Accessing a volatile variable synchronizes all the cached copied of the variables in the main
memory. Volatile can only be applied to instance variables, which are of type object or
private. A volatile object reference can be null.

42

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class MyRunnable implements Runnable{
private volatile boolean active;
public void run(){
active = true;
while (active){ // line 1

// some code here

}
public void stop(){

active = false; // line 2

F}

Usually, run() is called in one thread (the one you start using the Runnable), and stop() is
called from another thread. If in line 1, the cached value of active is used, the loop may
not stop when you set active to false in line 2. That's when you want to use volatile.

To use a modifier, you include its keyword in the definition of a class, method, or variable.
The modifier precedes the rest of the statement, as in the following example.

public class className {
/...
}
private boolean myFlag;
static final double weeks = 9.5;
protected static final int BOXWIDTH = 42;
public static void main(String[] arguments) {

// body of method

Access Control Modifiers

Java provides a number of access modifiers to set access levels for classes, variables,
methods and constructors. The four access levels are:

e Visible to the package, the default. No modifiers are needed.
e Visible to the class only (private).
e Visible to the world (public).

e Visible to the package and all subclasses (protected).

43

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Non-Access Modifiers

Java provides a humber of non-access modifiers to achieve many other functionality.

e The static modifier for creating class methods and variables.

e The final modifier for finalizing the implementations of classes, methods, and
variables.

e The abstract modifier for creating abstract classes and methods.

e The synchronized and volatile modifiers, which are used for threads.

What is Next?

In the next section, we will be discussing about Basic Operators used in Java Language.
The chapter will give you an overview of how these operators can be used during
application development.

44

w tutorialspoint

8. Java—Basic Operators

Java provides a rich set of operators to manipulate variables. We can divide all the Java
operators into the following groups:

Arithmetic Operators
Relational Operators
Bitwise Operators
Logical Operators
Assignment Operators

Misc Operators

The Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Sr.No. Operator and Example

+ (Addition)
Adds values on either side of the operator

Example: A + B will give 30

- (Subtraction)
Subtracts right-hand operand from left-hand operand

Example: A - B will give -10

* (Multiplication)
Multiplies values on either side of the operator

Example: A * B will give 200

45

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

/ (Division)
Divides left-hand operand by right-hand operand

Example: B / A will give 2

%0 (Modulus)
Divides left-hand operand by right-hand operand and returns remainder

Example: B % A will give 0

++ (Increment)
6 Increases the value of operand by 1

Example: B++ gives 21

-- (Decrement)
7 Decreases the value of operand by 1

Example: B-- gives 19

Example

The following program is a simple example which demonstrates the arithmetic operators.
Copy and paste the following Java program in Test.java file, and compile and run this
program:

public class Test {
public static void main(String args[]) {

int a = 10;

int b = 20;

int c = 25;

int d = 25;

System.out.println("a + b = " + (a + b));
System.out.println("a - b =" + (a - b));
System.out.println("a * b = " + (a * b));
System.out.println("b / a ="+ (b / a));
System.out.println("b % a = " + (b % a));
System.out.println("c % a =" + (c % a));
System.out.println("a++ =" + (a++));
System.out.println("b-- ="+ (a--));

46

w tutorialspoint

Java

// Check the difference in d++ and ++d

System.out.println("d++ "+ (d++))

System.out.println("++d "+ (++d));

P}

This will produce the following result:

a+b =230
a-b-=-10
a *b =200
b/a=2
b%a=20
c%a=5
a++ =10
b-- =11
d++ = 25
++d = 27
The Relational Operators

There are following relational operators supported by Java language.

Assume variable A holds 10 and variable B holds 20, then:

Sr.No.

Operator and Description

== (equal to)

Checks if the values of two operands are equal or not, if yes then condition
becomes true.

Example: (A == B) is not true.

= (not equal to)

Checks if the values of two operands are equal or not, if values are not
equal then condition becomes true.

Example: (A !'= B) is true.

47

' tutorialspoint

MPLYEASYLEARNMINIEG

Java

> (greater than)

Checks if the value of left operand is greater than the value of right
3 operand, if yes then condition becomes true.

Example: (A > B) is not true.

< (less than)

4 Checks if the value of left operand is less than the value of right operand,
if yes then condition becomes true.

Example: (A < B) is true.
>= (greater than or equal to)

5 Checks if the value of left operand is greater than or equal to the value of
right operand, if yes then condition becomes true.

Example: (A >= B) is not true.
<= (less than or equal to)

6 Checks if the value of left operand is less than or equal to the value of right
operand, if yes then condition becomes true.

Example: (A <= B) is true.

Example

The following program is a simple example that demonstrates the relational operators.
Copy and paste the following Java program in Test.java file and compile and run this
program.

public class Test {

public static void main(String args[]) {

int a = 10;
int b = 20;
System.out.println("a == b =" + (a == b));
System.out.println("a !'=b =" + (a !=b));
System.out.println("a > b =" + (a > b));
System.out.println("a < b =" + (a < b));
System.out.println("b >=a =" + (b >= a));
System.out.println("b <= a =" + (b <= a));
}
}
48
[]

' tutorialspoint

SIMPLYEASYLEARNINE

Java

This will produce the following result:

false

== b
al=»>b true

a > b = false
a < b = true
b >= a = true

b <= a = false

The Bitwise Operators

Java defines several bitwise operators, which can be applied to the integer types, long,
int, short, char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume ifa = 60 and b
= 13; now in binary format they will be as follows:

a = 00111100
b = 0000 1101
a&b = 0000 1100
alb = 0011 1101
a”b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators:

Assume integer variable A holds 60 and variable B holds 13 then:

Sr. No. Operator and Description

& (bitwise and)

Binary AND Operator copies a bit to the result if it exists in both operands.

Example: (A & B) will give 12 which is 0000 1100

49

@ tutorialspoint

Java

| (bitwise or)

2 Binary OR Operator copies a bit if it exists in either operand.

Example: (A | B) will give 61 which is 0011 1101

A (bitwise XOR)
3 Binary XOR Operator copies the bit if it is set in one operand but not both.

Example: (A ~ B) will give 49 which is 0011 0001

~ (bitwise compliment)

Binary Ones Complement Operator is unary and has the effect of 'flipping’
4 bits.

Example: (~A) will give -61 which is 1100 0011 in 2's complement form
due to a signed binary number.

<< (left shift)

Binary Left Shift Operator. The left operands value is moved left by the
number of bits specified by the right operand.

Example: A << 2 will give 240 which is 1111 0000

>> (right shift)

Binary Right Shift Operator. The left operands value is moved right by the
number of bits specified by the right operand.

Example: A >> 2 will give 15 which is 1111

>>> (zero fill right shift)

7 Shift right zero fill operator. The left operands value is moved right by the
number of bits specified by the right operand and shifted values are filled
up with zeros.

Example: A >>>2 will give 15 which is 0000 1111

50

LY ASYLEARNINE

m \ tutorialspoint

Example

Java

The following program is a simple example that demonstrates the bitwise operators. Copy
and paste the following Java program in Test.java file and compile and run this program:

public class Test {

public static void main(String
int a = 60; /* 60
int b = 13; /* 13

args[]) {

0011 1100 */
0000 1101 */

int c = 0;
c =a &b; /* 12 = 0000 1100 */
System.out.println("a & b = " + ¢);
c=a| b; /* 61 = 0011 1101 */
System.out.println("a | b = " + c);
c =a " b; /* 49 = 0011 0001 */
System.out.println("a * b =" + c);
C = ~a; /*-61 = 1100 0011 */
System.out.println("~a = " + c);
C = a << 2; /* 240 = 1111 0000 */
System.out.println("a << 2 = " + c);
c=a> 2; /* 15 = 1111 */
System.out.println("a >> 2 ="+ c);
C =a >> 2; /* 15 = 0000 1111 */
System.out.println("a >> 2 =" + c);
}
}
51
[

\ tutorialspoint

SIMPLYEASYLEARNINE

This will produce the following result:

Java

a&b =12
al| b=2¢61
a~b=49
~a = -61

a << 2 = 240

a > 15

a >>> 15

The Logical Operators

The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false, then:

Operator

Description

&& (logical and)

Called Logical AND operator. If both the operands are non-zero, then the
condition becomes true.

Example: (A && B) is false.

|l (logical or)

Called Logical OR Operator. If any of the two operands are non-zero, then
the condition becomes true.

Example: (A || B) is true.

! (logical not)

Called Logical NOT Operator. Use to reverses the logical state of its
operand. If a condition is true then Logical NOT operator will make false.

Example: (A && B) is true.

52

\ tutorialspoint

MPLYEASYLEARNMINIEG

Java

Example

The following simple example program demonstrates the logical operators. Copy and paste
the following Java program in Test.java file and compile and run this program:

public class Test {

public static void main(String args[]) {
boolean a = true;

boolean b = false;

System.out.println("a & b = " + (a&&b));
System.out.println("a || b = " + (al|b));
System.out.println("!(a & b) = " + I(a && b));

}

This will produce the following result:

a &b false

a || b= true

!(a & b) = true

The Assignment Operators

Following are the assignment operators supported by Java language:

Sr. No. Operator and Description

Simple assignment operator. Assigns values from right side operands to left
side operand.

Example: C = A + B will assign value of A + B into C

53

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

+=
> Add AND assignment operator. It adds right operand to the left operand
and assign the result to left operand.
Example: C += Ais equivalenttoC=C + A
3 Subtract AND assignment operator. It subtracts right operand from the left
operand and assign the result to left operand.
Example:C -= A is equivalenttoC=C - A
* =
4 Multiply AND assignment operator. It multiplies right operand with the left
operand and assign the result to left operand.
Example: C *= A is equivalenttoC=C * A
/=
5 Divide AND assignment operator. It divides left operand with the right
operand and assign the result to left operand.
Example: C /= Ais equivalenttoC=C/ A
%=
6 Modulus AND assignment operator. It takes modulus using two operands
and assign the result to left operand.
Example: C %= A is equivalenttoC=C % A
<<=
7 Left shift AND assignment operator.
Example: C <<= 2issameasC=C<< 2
>>=
8 Right shift AND assignment operator
Example: C >>=2issameasC=C >> 2

54

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

&=

9 Bitwise AND assignment operator.
Example: C&=2issameasC=C &2
A=

10 bitwise exclusive OR and assignment operator.
Example: C *=2issameasC=C " 2
|=

11 bitwise inclusive OR and assignment operator.
Example: C|=2issameasC=C| 2

Example

The following program is a simple example that demonstrates the assignment operators.
Copy and paste the following Java program in Test.java file. Compile and run this program:

public class Test {

public static void main(String args[]) {

int
int

int

C =

Sys

c +

Sys

C -

Sys

c *

Sys

a = 10;

b = 20;

c = 0;

a + b;
tem.out.println("c =a+b ="+ c);
=a;

tem.out.println("c +=a =" + c);
=a;

tem.out.println("c -=a ="+ c);
=a;

tem.out.println("c *=a =" + c);

55

\ tutorialspoint

SIMPLYEASYLEARNINE

Java

a = 10;
c = 15;

c /=a;

System.out.

a = 10;
c = 15;

C %= a ;

System.out.

System.out.

c &= a ;

System.out.

c "= a ;

System.out

cl=a;

System.out.

println("c

println("c

.println("c

.println("c

println("c

println("c

.println("c

println("c

<<= 2

>>= 2

>>= a

+C);

+cCc);

This will produce the following

result:

a+b=30
a = 40
a = 30

= a = 300

\ tutorialspoint

SIMPLYEASYLEARNINE

56

Java

c/=a-=1

c%=a =5

C <<= 2 = 20

c>»=2-=>5

c>»=2=1

c& a =20

c "= a = 10
c|l=a =10

Miscellaneous Operators

There are few other operators supported by Java Language.

Conditional Operator (? :)

Conditional operator is also known as the ternary operator. This operator consists of
three operands and is used to evaluate Boolean expressions. The goal of the operator is
to decide, which value should be assigned to the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

Following is an example:

public class Test {

public static void main(String args[]){

int a, b;

b=(a==1) ? 20: 30;
System.out.println("Value of b is : " + b);

b =(a==10) ? 20: 30;
System.out.println("Value of b is : " + b);

}

This will produce the following result:

Value of b is : 30
Value of b is : 20

57

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

instanceof Operator

This operator is used only for object reference variables. The operator checks whether the
object is of a particular type (class type or interface type). instanceof operator is written
as:

(Object reference variable) instanceof (class/interface type)

If the object referred by the variable on the left side of the operator passes the IS-A check
for the class/interface type on the right side, then the result will be true. Following is an
example:

public class Test {

public static void main(String args[]){
String name = "James";
// following will return true since name is type of String
boolean result = name instanceof String;

System.out.println(result);

}

This will produce the following result:

true

This operator will still return true, if the object being compared is the assignment
compatible with the type on the right. Following is one more example:

class Vehicle {}

public class Car extends Vehicle {
public static void main(String args[]){
Vehicle a = new Car();
boolean result = a instanceof Car;

System.out.println(result);

This will produce the following result:

true

58

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Precedence of Java Operators

Operator precedence determines the grouping of terms in an expression. This affects how
an expression is evaluated. Certain operators have higher precedence than others; for
example, the multiplication operator has higher precedence than the addition operator:

For example, x = 7 + 3 * 2; here x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

Category Operator Associativity
Postfix () [1 . (dot operator) Left toright
Unary ++--1~ Right to left

Multiplicative */ % Left to right
Additive + - Left to right
Shift >> >>> << Left to right

Relational >>=< <= Left to right

Equality === Left to right
Bitwise AND & Left to right
Bitwise XOR N Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR [Left to right

Conditional ?: Right to left

Assignment = 4+=-=*= /= Y= >>= <<= &= "= |= Right to left
What is Next?

The next chapter will explain about loop control in Java programming. The chapter will
describe various types of loops and how these loops can be used in Java program
development and for what purposes they are being used.

59

@ tutorialspoint

9. Java—Loop Control

There may be a situation when you need to execute a block of code several number of
times. In general, statements are executed sequentially: The first statement in a function
is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and following is the general form of a loop statement in most of the programming

languages:

Conditional Code

If condition
is true

If condition
is false

Java programming language provides the following types of loop to handle looping
requirements. Click the following links to check their detail.

Loop Type Description
i Repeats a statement or group of statements while a given
while loop condition is true. It tests the condition before executing the
loop body.
for loop Execute a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

do...while loop Like a while statement, except that it tests the condition at
the end of the loop body.

60

\tutorials point

SIMPLYEASYLEARMNINIEG

http://www.tutorialspoint.com/java/java_while_loop.htm
http://www.tutorialspoint.com/java/java_for_loop.htm
http://www.tutorialspoint.com/java/java_do_while_loop.htm

Java

While Loop in Java

A while loop statement in Java programming language repeatedly executes a target
statement as long as a given condition is true.

Syntax

The syntax of a while loop is:

while(Boolean_expression)

{
//Statements

}

Here, statement(s) may be a single statement or a block of statements. The
condition may be any expression, and true is any non zero value.

When executing, if the boolean_expression result is true, then the actions inside the loop
will be executed. This will continue as long as the expression result is true.

When the condition becomes false, program control passes to the line immediately
following the loop.

Flow Diagram

while(condition)

{
}

conditional code ;

If condition
is true

code block If condition

is false

61

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Here, key point of the while loop is that the loop might not ever run. When the expression
is tested and the result is false, the loop body will be skipped and the first statement after
the while loop will be executed.

Example

public class Test {

public static void main(String args[]) {
int x = 10;

while(x < 20) {

System.out.print("value of x : + X);
X++;

System.out.print("\n");

}

This will produce the following result:

value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18

value of x : 19

for Loop in Java

A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to be executed a specific number of times.

A for loop is useful when you know how many times a task is to be repeated.

62

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Syntax

The syntax of a for loop is:

for(initialization; Boolean_expression; update)
{
//Statements

}

Here is the flow of control in a for loop:

e The initialization step is executed first, and only once. This step allows you to
declare and initialize any loop control variables and this step ends with a semi colon

;).

¢ Next, the Boolean expression is evaluated. If it is true, the body of the loop is
executed. If it is false, the body of the loop will not be executed and control jumps
to the next statement past the for loop.

o After the body of the for loop gets executed, the control jumps back up to the
update statement. This statement allows you to update any loop control variables.
This statement can be left blank with a semicolon at the end.

e The Boolean expression is now evaluated again. If it is true, the loop executes and
the process repeats (body of loop, then update step, then Boolean expression).
After the Boolean expression is false, the for loop terminates.

63

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Flow Diagram

for(init; condition; increment)

{
}

conditional code ;

condition

code block

increment

If condition
is true

If condition
is false

Example

Following is an example code of the for loop in Java.

Java

public class Test {

public static void main(String args[]) {

for(int x = 10; x < 20; x = x+1) {

System.out.print("value of x : + X);

System.out.print("\n");

9 Vtutorialspoint

SIMPLYEASYLEARNINE

64

Java

This will produce the following result:

value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18

value of x : 19

Do While Loop in Java

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to
execute at least one time.

Syntax

Following is the syntax of a do...while loop:

do

{
//Statements

}while(Boolean_expression);

Notice that the Boolean expression appears at the end of the loop, so the statements in
the loop execute once before the Boolean is tested.

If the Boolean expression is true, the control jumps back up to do statement, and the
statements in the loop execute again. This process repeats until the Boolean expression is
false.

65

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Flow Diagram

do{
conditional code ;
} while (condition)

code block

If condition
is true

condition

If condition
is false

Example

Java

public class Test {

public static void main(String args[]){
int x = 190;

do{

System.out.print("value of x :

+x);
X++;
System.out.print("\n");

Ywhile(x < 20);

9 Vtutorialspoint

SIMPLYEASYLEARNINE

66

Java

This will produce the following result:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19
Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves

a scope, all automatic objects that were created in that scope are destroyed.

Java supports the following control statements. Click the following links to check their

detail.
Control Statement Description
Terminates the loop or switch statement and transfers
break statement execution to the statement immediately following the loop or

switch.

continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

Break Statement in Java

The break statement in Java programming language has the following two usages:

When the break statement is encountered inside a loop, the loop is immediately
terminated and the program control resumes at the next statement following the
loop.

It can be used to terminate a case in the switch statement (covered in the next
chapter).

67

\ tutorialspoint

SIMPLYEASYLEARNINE

http://www.tutorialspoint.com/java/java_break_statement.htm
http://www.tutorialspoint.com/java/java_continue_statement.htm

Java

Syntax

The syntax of a break is a single statement inside any loop:

break;

Flow Diagram

conditional

code

If condition
is true

condition

If condition
is false

Example

public class Test {

public static void main(String args[]) {
int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers) {
if(x == 30) {
break;
}
System.out.print(x);
System.out.print("\n");

68

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

This will produce the following result:

10
20

Continue Statement in Java

The continue keyword can be used in any of the loop control structures. It causes the
loop to immediately jump to the next iteration of the loop.

e In a for loop, the continue keyword causes control to immediately jump to the
update statement.

e In a while loop or do/while loop, control immediately jumps to the Boolean
expression.

Syntax

The syntax of a continue is a single statement inside any loop:

continue;

Flow Diagram

conditional

code

If condition continue
is true

condition

If condition
is false

69

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test {

public static void main(String args[]) {
int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers) {
if(x == 30) {
continue;

}
System.out.print(x);

System.out.print("\n");

}

This will produce the following result:

10
20
40
50

Enhanced for loop in Java

As of Java 5, the enhanced for loop was introduced. This is mainly used to traverse
collection of elements including arrays.

Syntax

Following is the syntax of enhanced for loop:

for(declaration : expression)

{
//Statements

o Declaration: The newly declared block variable, is of a type compatible with the
elements of the array you are accessing. The variable will be available within the
for block and its value would be the same as the current array element.

70

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Example

Java

Expression: This evaluates to the array you need to loop through. The expression
can be an array variable or method call that returns an array.

public class Test {

public static void main(String args[]){

}

int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers){
System.out.print(x);

System.out.print(",");
}
System.out.print("\n");
String [] names ={"James", "Larry", "Tom", "Lacy"};
for(String name : names) {
System.out.print(name);

System.out.print(",");

This will produce the following result:

10,20,30,40,50,

James, Larry,Tom, Lacy,

What is Next?

In the following chapter, we will be learning about decision making statements in Java
programming.

' tutorialspoint

SIMPLYEASYLEARNINE

71

10. Java— Decision Making

Decision making structures have one or more conditions to be evaluated or tested by the
program, along with a statement or statements that are to be executed if the condition is
determined to be true, and optionally, other statements to be executed if the condition is
determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

If condition
is false

If condition
is true

conditional 'I
code

Java programming language provides following types of decision making statements. Click
the following links to check their detail.

Statement Description

if statement An if statement consists of a boolean expression
followed by one or more statements.

. An if statement can be followed by an optional else
if...else statement statement, which executes when the boolean
expression is false.

72

\tutorials point

SIMPLYEASYLEARMNINIEG

http://www.tutorialspoint.com/java/if_statement_in_java.htm
http://www.tutorialspoint.com/java/if_else_statement_in_java.htm

Java

nested if You can use one if or else if statement inside another if or else

statements if statement(s).

switch statement | A switch statement allows a variable to be tested for equality
against a list of values.

if Statement in Java

An if statement consists of a Boolean expression followed by one or more statements.

Syntax

Following is the syntax of an if statement:

if(Boolean_expression)

{

//Statements will execute if the Boolean expression is true

}

If the Boolean expression evaluates to true then the block of code inside the if statement
will be executed. If not, the first set of code after the end of the if statement (after the
closing curly brace) will be executed.

Flow Diagram

If condition
is true

If condition it | cod
is false conditional code

73

9 Vtutorialspoint

SIMPLYEASYLEARNINE

http://www.tutorialspoint.com/java/nested_if_statements_in_java.htm
http://www.tutorialspoint.com/java/nested_if_statements_in_java.htm
http://www.tutorialspoint.com/java/switch_statement_in_java.htm

Java

Example

public class Test {

public static void main(String args[]){
int x = 10;

if(x < 20){

System.out.print("This is if statement");

}

This will produce the following result:

This is if statement.

if-else Statement in Java

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

Syntax

Following is the syntax of an if...else statement:

if(Boolean_expression){
//Executes when the Boolean expression is true
}else{

//Executes when the Boolean expression is false

If the boolean expression evaluates to true, then the if block of code will be executed,
otherwise else block of code will be executed.

74

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Flow Diagram

If condition

is true
condition

If condition
is false

else code

Example

Java

public class Test {

public static void main(String args[]){
int x = 30;

if(x < 20){
System.out.print("This is if statement");
}else{

System.out.print("This is else statement");

This will produce the following result:

9 Vtutorialspoint

SIMPLYEASYLEARNINE

75

Java

This is else statement

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very useful
to test various conditions using single if...else if statement.

When using if, else if, else statements there are a few points to keep in mind.

e An if can have zero or one else's and it must come after any else if's.
e An if can have zero to many else if's and they must come before the else.

e Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

Following is the syntax of an if...else statement:

if(Boolean_expression 1){

//Executes when the Boolean expression 1 is true
}else if(Boolean_expression 2){

//Executes when the Boolean expression 2 is true
}else if(Boolean_expression 3){

//Executes when the Boolean expression 3 is true
}else {

//Executes when the none of the above condition is true.

Example

public class Test {

public static void main(String args[]){
int x = 30;
if(x == 10){
System.out.print("Value of X is 10");
}else if(x == 20){
System.out.print("Value of X is 20");
Yelse if(x == 30){
System.out.print("Value of X is 30");
}else{

System.out.print("This is else statement");

76

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

}

This will produce the following result:

Value of X is 30

Nested if Statement in Java

It is always legal to nest if-else statements which means you can use one if or else if
statement inside another if or else if statement.

Syntax

The syntax for a nested if...else is as follows:

if(Boolean_expression 1){
//Executes when the Boolean expression 1 is true
if(Boolean_expression 2){

//Executes when the Boolean expression 2 is true

}

You can nest else if...else in the similar way as we have nested if statement.

Example

public class Test {

public static void main(String args[]){
int x = 30;
int y = 10;

if(x == 30){
if(y == 10){
System.out.print("X = 30 and Y = 10");

This will produce the following result:

77

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

X =

30 and Y = 10

Switch Statement in Java

A switch statement allows a variable to be tested for equality against a list of values.
Each value is called a case, and the variable being switched on is checked for each case.

Syntax

The syntax of enhanced for loop is:

switch(expression){

case value :
//Statements
break; //optional
case value :
//Statements
break; //optional
//You can have any number of case statements.
default : //Optional
//Statements

The following rules apply to a switch statement:

The variable used in a switch statement can only be integers, convertable integers
(byte, short, char), strings and enums.

You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

The value for a case must be the same data type as the variable in the switch and
it must be a constant or a literal.

When the variable being switched on is equal to a case, the statements following
that case will execute until a break statement is reached.

When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

Not every case needs to contain a break. If no break appears, the flow of control
will fall through to subsequent cases until a break is reached.

78

' tutorialspoint

SIMPLYEASYLEARNINE

Java

e A switch statement can have an optional default case, which must appear at the
end of the switch. The default case can be used for performing a task when none

of the cases is true. No break is needed in the default case.

Flow Diagram

expression

cane 1 code block 1

case 2 code block 2

case 3 code block 3

4

i

AN

default code block N

Example

public class Test {

public static void main(String args[]){
//char grade = args[@].charAt(9);

char grade = 'C';

switch(grade)
{

case 'A’

System.out.println("Excellent!");

break;
case 'B'
case 'C'

System.out.println("Well done");

9 Vtutorialspoint

SIMPLYEASYLEARNINE

79

Java

break;
case 'D'

System.out.println("You passed");

case 'F'
System.out.println("Better try again");
break;
default :
System.out.println("Invalid grade");
}

System.out.println("Your grade is

+ grade);

Compile and run the above program using various command line arguments. This will
produce the following result:

$ java Test
Well done
Your grade is a C

$

The ? : Operator:

We have covered conditional operator ? : in the previous chapter which can be used to
replace if...else statements. It has the following general form:

Expl ? Exp2 : Exp3;

Where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
To determine the value of the whole expression, initially expl is evaluated.

o If the value of expl is true, then the value of Exp2 will be the value of the whole
expression.

o Ifthe value of expl is false, then Exp3 is evaluated and its value becomes the value
of the entire expression.

80

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

What is Next?

In the next chapter, we will discuss about Number class (in the java.lang package) and its
subclasses in Java Language.

We will be looking into some of the situations where you will use instantiations of these
classes rather than the primitive data types, as well as classes such as formatting,
mathematical functions that you need to know about when working with Numbers.

81

9 Vtutorialspoint

SIMPLYEASYLEARNINE

11. Java—Numbers Class

Normally, when we work with Numbers, we use primitive data types such as byte, int,
long, double, etc.

Example

int i = 5000;
float gpa = 13.65;

byte mask = ©@xaf;

However, in development, we come across situations where we need to use objects instead
of primitive data types. In order to achieve this, Java provides wrapper classes.

All the wrapper classes (Integer, Long, Byte, Double, Float, Short) are subclasses of the

abstract class Number.
‘ Number ’

) | () |)
Creser) (Coron) (Coms

The object of the wrapper class contains or wraps its respective primitive data type.
Converting primitive data types into object is called boxing, and this is taken care by the
compiler. Therefore, while using a wrapper class you just need to pass the value of the
primitive data type to the constructor of the Wrapper class.

And the Wrapper object will be converted back to a primitive data type, and this process
is called unboxing. The Number class is part of the java.lang package.

Following is an example of boxing and unboxing:

public class Test{
public static void main(String args[]){
Integer x = 5; // boxes int to an Integer object
X = x + 10; // unboxes the Integer to a int

System.out.println(x);

82

\tutorials point

SIMPLYEASYLEARMNINIEG

Java

This will produce the following result:

15

When x is assigned an integer value, the compiler boxes the integer because x is integer
object. Later, x is unboxed so that they can be added as an integer.

Number Methods

Following is the list of the instance methods that all the subclasses of the Number class
implements:

Sr.
No.

Methods with Description

xxxValue()

Converts the value of this Number object to the xxx data type and returns it.

compareTo()

Compares this Number object to the argument.

equals()

Determines whether this number object is equal to the argument.

valueOf()

Returns an Integer object holding the value of the specified primitive.

toString()

Returns a String object representing the value of a specified int or Integer.

parselnt()

This method is used to get the primitive data type of a certain String.

abs

Returns the absolute value of the argument.

83

tutorialspoint

SIMPLYEASYLEARNINE

http://www.tutorialspoint.com/java/number_xxxvalue.htm
http://www.tutorialspoint.com/java/number_compareto.htm
http://www.tutorialspoint.com/java/number_equals.htm
http://www.tutorialspoint.com/java/number_valueof.htm
http://www.tutorialspoint.com/java/number_tostring.htm
http://www.tutorialspoint.com/java/number_parseint.htm
http://www.tutorialspoint.com/java/number_abs.htm

Java

ceil()

Returns the smallest integer that is greater than or equal to the argument.

Returned as a double.

floor

Returns the largest integer that is less than or equal to the argument.

Returned as a double.

10

rint()

Returns the integer that is closest in value to the argument. Returned as a

double.

11

round()

Returns the closest long or int, as indicated by the method's return type to

the argument.

12

min

Returns the smaller of the two arguments.

13

max

Returns the larger of the two arguments.

14

exgg !

Returns the base of the natural logarithms, e, to the power of the argument.

15

log()

Returns the natural logarithm of the argument.

16

pow()

Returns the value of the first argument raised to the power of the second

argument.

84

\ tutorialspoint

SIMPLYEASYLEARNINE

http://www.tutorialspoint.com/java/number_ceil.htm
http://www.tutorialspoint.com/java/number_floor.htm
http://www.tutorialspoint.com/java/number_rint.htm
http://www.tutorialspoint.com/java/number_round.htm
http://www.tutorialspoint.com/java/number_min.htm
http://www.tutorialspoint.com/java/number_max.htm
http://www.tutorialspoint.com/java/number_exp.htm
http://www.tutorialspoint.com/java/number_log.htm
http://www.tutorialspoint.com/java/number_pow.htm

Java

17

sqrt()

Returns the square root of the argument.

18

sin()

Returns the sine of the specified double value.

19

cos()

Returns the cosine of the specified double value.

20

tan()

Returns the tangent of the specified double value.

21

asin()

Returns the arcsine of the specified double value.

22

acos()

Returns the arccosine of the specified double value.

23

atan()

Returns the arctangent of the specified double value.

24

atan2()

Converts rectangular coordinates (x, y) to polar coordinate (r, theta) and

returns theta.

25

toDegrees()

Converts the argument to degrees.

26

toRadians()

Converts the argument to radians.

85

tutorialspoint

SIMPLYEASYLEARNINE

http://www.tutorialspoint.com/java/number_sqrt.htm
http://www.tutorialspoint.com/java/number_sin.htm
http://www.tutorialspoint.com/java/number_cos.htm
http://www.tutorialspoint.com/java/number_tan.htm
http://www.tutorialspoint.com/java/number_asin.htm
http://www.tutorialspoint.com/java/number_acos.htm
http://www.tutorialspoint.com/java/number_atan.htm
http://www.tutorialspoint.com/java/number_atan2.htm
http://www.tutorialspoint.com/java/number_todegrees.htm
http://www.tutorialspoint.com/java/number_toradians.htm

Java

random()

27
Returns a random number.

Java XXXValue Method

Description

The method converts the value of the Number Object that invokes the method to the

primitive data type that is returned from the method.

Syntax

Here is a separate method for each primitive data type:

byte byteValue()
short shortValue()
int intValue()

long longValue()
float floatValue()
double doubleValue()

Parameters

Here is the detail of parameters:

e All these are default methods and accepts no parameter.

Return Value

e This method returns the primitive data type that is given in the signature.

Example

public class Test{

public static void main(String args[]){
Integer x = 5;
// Returns byte primitive data type
System.out.println(x.byteValue());

9 Vtutorialspoint

SIMPLYEASYLEARNINE

86

http://www.tutorialspoint.com/java/number_random.htm

Java

// Returns double primitive data type
System.out.println(x.doubleValue());

// Returns long primitive data type
System.out.println(x.longValue());

}

This will produce the following result:

Java — compareTo() Method

Description

The method compares the Number object that invoked the method to the argument. It is
possible to compare Byte, Long, Integer, etc.

However, two different types cannot be compared, both the argument and the Number
object invoking the method should be of the same type.

Syntax

public int compareTo(NumberSubClass referenceName)

Parameters

Here is the detail of parameters:

o referenceName -- This could be a Byte, Double, Integer, Float, Long, or Short.

Return Value
o If the Integer is equal to the argument then 0 is returned.
e If the Integer is less than the argument then -1 is returned.

o If the Integer is greater than the argument then 1 is returned.

87

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{

public static void main(String args[]){
Integer x = 5;
System.out.println(x.compareTo(3));
System.out.println(x.compareTo(5));
System.out.println(x.compareTo(8));

This will produce the following result:

Java-—equals() Method

Description

The method determines whether the Number object that invokes the method is equal to
the object that is passed as an argument.

Syntax

public boolean equals(Object o)

Parameters

Here is the detail of parameters:

e -- Any object.

Return Value

e The method returns True if the argument is not null and is an object of the same
type and with the same numeric value. There are some extra requirements for
Double and Float objects that are described in the Java API documentation.

88

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Example

Java

public class Test{

public static void main(String args[]){
Integer x = 5;

Integer y 10;

Integer z =5;

Short a

]
v
[

System.out.println(x.equals(y));
System.out.println(x.equals(z));
System.out.println(x.equals(a));

This will produce the following result:

false
true

false

Java — valueOf() Method

Description

The valueOf method returns the relevant Number Object holding the value of the argument

passed. The argument can be a primitive data type, String, etc.

This method is a static method. The method can take two arguments, where one is a

String and the other is a radix.

Syntax

Following are all the variants of this method:

static Integer valueOf(int i)
static Integer valueOf(String s)

static Integer valueOf(String s, int radix)

9 Vtutorialspoint

SIMPLYEASYLEARNINE

89

Java

Parameters

Here is the detail of parameters:

e i-- Anint for which Integer representation would be returned.

e s -- A String for which Integer representation would be returned.

¢ radix -- This would be used to decide the value of returned Integer based on the
passed String.

Return Value
o valueOf(int i): This returns an Integer object holding the value of the specified
primitive.

e valueOf(String s): This returns an Integer object holding the value of the
specified string representation.

¢ valueOf(String s, int radix): This returns an Integer object holding the integer
value of the specified string representation, parsed with the value of radix.

public class Test{
public static void main(String args[]){

Integer x =Integer.valueOf(9);

Double ¢ = Double.valueOf(5);

Float a = Float.valueOf("80");

Integer b = Integer.valueOf("444",16);
System.out.println(x);
System.out.println(c);

System.out.println(a);
System.out.println(b);

}

This will produce the following result:

9
5.0
80.0
1092

90

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Java —toString() Method

Description

The method is used to get a String object representing the value of the Number Object.

If the method takes a primitive data type as an argument, then the String object
representing the primitive data type value is returned.

If the method takes two arguments, then a String representation of the first argument in
the radix specified by the second argument will be returned.

Syntax

Following are all the variants of this method:

String toString()
static String toString(int i)

Parameters

Here is the detail of parameters:

e i -- An int for which string representation would be returned.

Return Value
¢ toString(): This returns a String object representing the value of thisInteger.

e toString(int i): This returns a String object representing the specified integer.

Example

public class Test{

public static void main(String args[]){

Integer x = 5;

System.out.println(x.toString());
System.out.println(Integer.toString(12));

}

This will produce the following result:

5
12

91

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java — parselnt() Method

Java

Description

This method is used to get the primitive data type of a certain String. parseXxx() is a static

method and can have one argument or two.

Syntax

Following are all the variants of this method:

static int parseInt(String s)

static int parseInt(String s, int radix)

Parameters

Here is the detail of parameters:

e s -- This is a string representation of decimal.

¢ radix -- This would be used to convert String s into integer.

Return Value

e parselInt(String s): This returns an integer (decimal only).

o parselnt(int i): This returns an integer, given a string representation of decimal,
binary, octal, or hexadecimal (radix equals 10, 2, 8, or 16 respectively) numbers

as input.

Example

public class Test{

public static void main(String args[]){
int x =Integer.parseInt("9");
double c = Double.parseDouble("5");
int b = Integer.parseInt("444",16);

System.out.println(x);
System.out.println(c);
System.out.println(b);

9 Vtutorialspoint

SIMPLYEASYLEARNINE

92

This will produce the following result:

Java

9
5.0
1092

Java —abs() Method

Description

The method gives the absolute value of the argument. The argument can be int, float,

long, double, short, byte.

Syntax

Following are all the variants of this method:

double abs(double d)
float abs(float f)
int abs(int i)

long abs(long lng)

Parameters

Here is the detail of parameters:

e Any primitive data type

Return Value

e This method Returns the absolute value of the argument.

Example

public class Test{

public static void main(String args[]){
Integer a = -8;
double d = -100;
float £ = -90;

System.out.println(Math.abs(a));
System.out.println(Math.abs(d));
System.out.println(Math.abs(f));

9 Vtutorialspoint

SIMPLYEASYLEARNINE

93

Java

}

This will produce the following result:

8
100.0
90.0

Java — ceil() Method

Description

The method ceil gives the smallest integer that is greater than or equal to the argument.

Syntax

This method has the following variants:

double ceil(double d)

double ceil(float f)

Parameters

Here is the detail of parameters:

e A double or float primitive data type

Return Value

e This method returns the smallest integer that is greater than or equal to the

argument. Returned as a double.

Example

public class Test{

public static void main(String args[]){
double d = -100.675;
float f = -90;

System.out.println(Math.ceil(d));
System.out.println(Math.ceil(f));

9 Vtutorialspoint

SIMPLYEASYLEARNINE

94

Java

System.out.println(Math.floor(d));
System.out.println(Math.floor(f));

}

This will produce the following result:

-100.0
-90.0
-101.0
-90.0

Java-—floor() Method

Description

The method floor gives the largest integer that is less than or equal to the argument.

Syntax

This method has the following variants:

double floor(double d)

double floor(float f)

Parameters

Here is the detail of parameters:

e A double or float primitive data type.

Return Value

e This method returns the largest integer that is less than or equal to the argument.
Returned as a double.

Example

public class Test{

public static void main(String args[]){
double d = -100.675;
float f = -90;

95

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

System.out.println(Math.floor(d));
System.out.println(Math.floor(f));

System.out.println(Math.ceil(d));
System.out.println(Math.ceil(f));

}

This will produce the following result:

-l101.0
-90.0
-100.0
-90.0

Java —rint() Method

Description

The method rint returns the integer that is closest in value to the argument.

Syntax

double rint(double d)

Parameters

Here is the detail of parameters:

e d -- it accepts a double value as parameter.

Return Value

e This method returns the integer that is closest in value to the argument. Returned
as a double,

Example

public class Test{
public static void main(String args[]){

double d = 100.675;
double e = 100.500;
double ¥ = 100.200;
96
[] . = -
tutorialspoint

SIMPLYEASYLEARNINE

Java

System.out.println(Math.rint(d));
System.out.println(Math.rint(e));
System.out.println(Math.rint(f));

This will produce the following result:

101.0
100.0
100.0

Java-round() Method

Description

The method round returns the closest long or int, as given by the methods return type.

Syntax

This method has the following variants:

long round(double d)

int round(float f)

Parameters

Here is the detail of parameters:

e d -- A double or float primitive data type
e f -- A float primitive data type

Return Value

e This method returns the closest long or int, as indicated by the method's return
type, to the argument.

Example

public class Test{

public static void main(String args[]){

97

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

double d

100.675;

double e

100.500;
float f = 100;
float g = 90f;

System.out.println(Math.round(d));
System.out.println(Math.round(e));
System.out.println(Math.round(f));
System.out.println(Math.round(g));

}

This will produce the following result:

101
101
100
90

Java —min() Method

Description

The method gives the smaller of the two arguments. The argument can be int, float, long,
double.

Syntax

This method has the following variants:

double min(double argl, double arg2)
float min(float argl, float arg2)
int min(int argl, int arg2)

long min(long argl, long arg2)

Parameters

Here is the detail of parameters:

e This method accepts any primitive data type as a parameter.

98

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Return Value

e This method returns the smaller of the two arguments.

Example

Java

public class Test{

public static void main(String args[]){
System.out.println(Math.min(12.123, 12.456));
System.out.println(Math.min(23.12, 23.9));

This will produce the following result:

12.123
23.0

Java —max() Method

Description

This method gives the maximum of the two arguments. The argument can be int, float,

long, double.

Syntax

This method has the following variants:

double max(double argl, double arg2)
float max(float argl, float arg2)
int max(int argl, int arg2)

long max(long argl, long arg2)

Parameters

Here is the detail of parameters:

e This method accepts any primitive data type as a parameter.

Return Value

e This method returns the maximum of the two arguments.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

99

Java

Example

public class Test{

public static void main(String args[]){
System.out.println(Math.max(12.123, 12.456));
System.out.println(Math.max(23.12, 23.9));

This will produce the following result:

12.456
23.12

Java-—exp() Method

Description

The method returns the base of the natural logarithms, e, to the power of the argument.

Syntax

double exp(double d)

Parameters

Here is the detail of parameters:

e d --Any primitive data type.

Return Value

e This method returns the base of the natural logarithms, e, to the power of the
argument.

100

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Example

Java

public class Test{

public static void main(String args[]){
double x = 11.635;

double y = 2.76;

System.out.printf("The value of e is %.4f%n", Math.E);
System.out.printf("exp(%.3f) is %.3f%n", x, Math.exp(x));

This will produce the following result:

The value of e is 2.7183
exp(11.635) is 112983.831

Java-log() Method

Description

The method returns the natural logarithm of the argument.

Syntax

double log(double d)

Parameters

Here is the detail of parameters:

e d -- Any primitive data type.

Return Value

e This method returns the natural logarithm of the argument.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

101

Java

Example

public class Test{

public static void main(String args[]){
double x = 11.635;

double y = 2.76;

System.out.printf("The value of e is %.4f%n", Math.E);
System.out.printf("log(%.3f) is %.3f%n", x, Math.log(x));

This will produce the following result:

The value of e is 2.7183
log(11.635) is 2.454

Java-— pow() Method

Description

The method returns the value of the first argument raised to the power of the second
argument.

Syntax

double pow(double base, double exponent)

Parameters

Here is the detail of parameters —

e base -- Any primitive data type.

¢ exponenet -- Any primitive data type.

Return Value

e This method returns the value of the first argument raised to the power of the
second argument.

102

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{

public static void main(String args[]){
double x = 11.635;

double y = 2.76;

System.out.printf("The value of e is %.4f%n", Math.E);
System.out.printf("pow(%.3f, %.3f) is %.3f%n", x, y, Math.pow(x, y));

This will produce the following result —

The value of e is 2.7183
pow(11.635, 2.760) is 874.008

Java - sqrt() Method

Description

The method returns the square root of the argument.

Syntax

double sqgrt(double d)

Parameters

Here is the detail of parameters:

e d -- Any primitive data type.

Return Value

e This method returns the square root of the argument.

103

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Example

Java

public class Test{

public static void main(String args[]){
double x = 11.635;

double y = 2.76;

System.out.printf("The value of e is %.4f%n", Math.E);
System.out.printf("sqrt(%.3f) is %.3f%n", x, Math.sqrt(x));

This will produce the following result:

The value of e is 2.7183

sqrt(11.635) is 3.411

Java - sin() Method

Description

The method returns the sine of the specified double value.

Syntax

double sin(double d)

Parameters

Here is the detail of parameters:

e d -- A double data type.

Return Value

e This method returns the sine of the specified double value.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

104

Example

Java

public class Test{

public static void main(String args[]){
double degrees = 45.0;

double radians = Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n", Math.PI);

System.out.format("The sine of %.1f degrees is %.4f%n", degrees,
Math.sin(radians));

This will produce the following result:

The value of pi is 3.1416
The sine of 45.0 degrees is 0.7071

Java - cos() Method

Description

The method returns the cosine of the specified double value.

Syntax

double cos(double d)

Parameters

Here is the detail of parameters:

e d -- This method accepts a value of double data type.

Return Value

e This method returns the cosine of the specified double value.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

105

Java

Example

public class Test{

public static void main(String args[]){
double degrees = 45.0;

double radians = Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n", Math.PI);

System.out.format("The cosine of %.1f degrees is %.4f%n", degrees,
Math.cos(radians));

This will produce the following result:

The value of pi is 3.1416
The cosine of 45.0 degrees is 0.7071

Java-—tan() Method

Description

The method returns the tangent of the specified double value.

Syntax

double tan(double d)

Parameters

Here is the detail of parameters:

e d -- A double data type.

Return Value

e This method returns the tangent of the specified double value.

106

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{

public static void main(String args[]){
double degrees = 45.0;

double radians = Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n", Math.PI);

System.out.format("The tangent of %.1f degrees is %.4f%n", degrees,
Math.tan(radians));

This will produce the following result:

The value of pi is 3.1416
The tangent of 45.0 degrees is 1.0000

Java-—asin() Method

Description

The method returns the arcsine of the specified double value.

Syntax

double asin(double d)

Parameters

Here is the detail of parameters:

e d -- A double data types.

Return Value

e This method returns the arcsine of the specified double value.

107

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Example

Java

public class Test{

public static void main(String args[]){

double degrees

45.0;

double radians = Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n", Math.PI);

System.out.format("The arcsine of %.4f is %.4f degrees %n",
Math.sin(radians), Math.toDegrees(Math.asin(Math.sin(radians))));

This will produce the following result:

The value of pi is 3.1416
The arcsine of 0.7071 is 45.0000 degrees

Java —acos() Method

Description

The method returns the arccosine of the specified double value.

Syntax

double acos(double d)

Parameters

Here is the detail of parameters:

e d -- A double data type.

Return Value

e This method returns the arccosine of the specified double value.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

108

Example

Java

public class Test{

public static void main(String args[]){
double degrees = 45.0;

double radians = Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n", Math.PI);

System.out.format("The arccosine of %.4f is %.4f degrees %n",
Math.cos(radians), Math.toDegrees(Math.acos(Math.sin(radians))));

This will produce the following result:

The value of pi is 3.1416
The arccosine of 0.7071 is 45.0000 degrees

Java - atan() Method

Description

The method returns the arctangent of the specified double value.

Syntax

double atan(double d)

Parameters

Here is the detail of parameters:

e d -- A double data type.

Return Value

¢ This method returns the arctangent of the specified double value.

9 Vtutorialspoint

SIMPLYEASYLEARNINE

109

Java

Example

public class Test{

public static void main(String args[]){
double degrees = 45.0;

double radians = Math.toRadians(degrees);

System.out.format("The value of pi is %.4f%n", Math.PI);

System.out.format("The arctangent of %.4f is %.4f degrees %n",
Math.cos(radians), Math.toDegrees(Math.atan(Math.sin(radians))));

This will produce the following result:

The value of pi is 3.1416
The arctangent of 1.0000 is 45.0000 degrees

Java - atan2() Method

Description

The method converts rectangular coordinates (x, y) to polar coordinate (r, theta) and
returns theta.

Syntax

double atan2(double y, double x)

Parameters

Here is the detail of parameters:

e X -- X co-ordinate in double data type.

e Y --Y co-ordinate in double data type.

Return Value

e This method returns theta from polar coordinate (r, theta).

110

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{

public static void main(String args[]){
double x = 45.0;

double y = 30.0;

System.out.println(Math.atan2(x, y));

This will produce the following result:

0.982793723247329

Java —toDegrees() Method

Description

The method converts the argument value to degrees.

Syntax

double toDegrees(double d)

Parameters

Here is the detail of parameters:

e d -- A double data type.

Return Value

e This method returns a double value.

111

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{

public static void main(String args[]){
double x = 45.0;

double y = 30.0;

System.out.println(Math.toDegrees(x));
System.out.println(Math.toDegrees(y));

This will produce the following result:

2578.3100780887044
1718.8733853924698

Java —toRadians() Method

Description

The method converts the argument value to radians.

Syntax

double toRadians(double d)

Parameters

Here is the detail of parameters:

e d -- A double data type.

Return Value

e This method returns a double value.

112

9 Vtutorialspoint

SIMPLYEASYLEARNINE

Java

Example

public class Test{

public static void main(String args[]){
double x = 45.0;

double y = 30.0;

System.out.println(Math.toRadians(x));
System.out.println(Math.toRadians(y));

This will produce the following result:

0.7853981633974483
0.5235987755982988

Java —random() Method

Description

The method is used to generate a random number between 0.0 and 1.0. The range is: 0.0
=< Math.random < 1.0. Different ranges can be achieved by using arithmetic operations.

Syntax

static double random()

Parameters

Here is the detail of parameters:

e This is a default method and accepts no parameter.

Return Value

e This method returns a dou